pyLBM Documentation

Release 0.3.0

Benjamin Graille, Loïc Gouarin

Mar 31, 2017

Contents

1 Documentation for users 3
1.1 The Geometry of the simulation 3
1.2 The Domain of the simulation 13
1.3 The Scheme 25
1.4 The Boundary Conditions 34
1.5 The storage 34
1.6 Tutorial 38
2 Documentation of the code 73
2.1 pyLBM.Geometry 73
2.2 pyLBM.Domain 74
2.3 pyLBM.Scheme 75
2.4 pyLBM.Simulation 77
2.5 the module stencil 78
2.6 The module elements 88
2.7 the module geometry 107
2.8 the module domain 107
2.9 the module storage 109
2.10 the module bounds 115
3 References 121
4 Indices and tables 123
Bibliography 125
pyLBM is an all-in-one package for numerical simulations using Lattice Boltzmann solvers.
pyLBM is licensed under the BSD license, enabling reuse with few restrictions.
pyLBM can be a simple way to make numerical simulations by using the Lattice Boltzmann method.
To install pyLBM, you have several ways. You can install the last version on Pypi

```
pip install pyLBM
```

You can also clone the project

```
git clone https://github.com/pylbm/pylbm
```

and then use the commands

```
pip install -r requirements.txt
python setup.py install
```

or

```
pip install -r requirements.txt
python setup.py install --user
```

Once the package is installed you just have to understand how build a dictionary that will be understood by pyLBM to perform the simulation. The dictionary should contain all the needed informations as

- the geometry (see here for documentation)
- the scheme (see here for documentation)
- the boundary conditions (see here for documentation)
- another informations like the space step, the scheme velocity, the generator of the functions...

To understand how to use pyLBM, you have a lot of Python notebooks in the tutorial.
pyLBM Documentation, Release 0.3.0

CHAPTER 1

Documentation for users

The Geometry of the simulation

With pyLBM, the numerical simulations can be performed in a domain with a complex geometry. This geometry is construct without considering a particular mesh but only with geometrical objects. All the geometrical informations are defined through a dictionary and put into an object of the class Geometry.

First, the domain is put into a box: a segment in 1D, a rectangle in 2D, and a rectangular parallelepipoid in 3D.
Then, the domain is modified by adding or deleting some elementary shapes. In 2D, the elementary shapes are

- a Circle
- an Ellipse
- a Parallelogram
- a Triangle

From version 0.2, the geometrical elements are implemented in 3D. The elementary shapes are

- a Sphere
- an Ellipsoid
- a Parallelepiped
- a Cylinder with a 2D-base
- Cylinder (Circle)
- Cylinder (Ellipse)
- Cylinder (Triangle)

Several examples of geometries can be found in demo/examples/geometry/

Examples in 1D

```
script
```

The segment $[0,1]$

```
d = {'box':{'x': [0, 1], 'label': [0, 1]}}
g = pyLBM.Geometry(d)
g.visualize(viewlabel = True)
```


The segment $[0,1]$ is created by the dictionary with the key box. We then add the labels 0 and 1 on the edges with the key label. The result is then visualized with the labels by using the method visualize. If no labels are given in the dictionary, the default value is -1 .

Examples in 2D

script

The square $[0,1]^{2}$

```
d = {'box':{'x': [0, 1], 'y': [0, 1]}}
g = pyLBM.Geometry(d)
g.visualize()
```

Geometry

The square $[0,1]^{2}$ is created by the dictionary with the key box. The result is then visualized by using the method visualize.

We then add the labels on each edge of the square through a list of integers with the conventions:

- first for the left $\left(x=x_{\min }\right)$
- third for the bottom $\left(y=y_{\text {min }}\right)$
- second for the right $\left(x=x_{\max }\right)$
- fourth for the top $\left(y=y_{\max }\right)$

```
d = {'box':{'x': [0, 1], 'y': [0, 1], 'label':[0, 1, 2, 3]}}
g = pyLBM.Geometry(d)
g.visualize(viewlabel = True)
```


If all the labels have the same value, a shorter solution is to give only the integer value of the label instead of the list. If no labels are given in the dictionary, the default value is -1 .
script 3 script 2 script 1

A square with a hole

The unit square $[0,1]^{2}$ can be holed with a circle (script 1) or with a triangular or with a parallelogram (script 3)
In the first example, a solid disc lies in the fluid domain defined by a circle with a center of $(0.5,0.5)$ and a radius of 0.125

```
d = {'box':{'x': [0, 1], 'y': [0, 1], 'label':0},
    'elements':[pyLBM.Circle((.5, .5), .125, label = 1)],
}
g = pyLBM.Geometry(d)
g.visualize(viewlabel=True)
```


The dictionary of the geometry then contains an additional key elements that is a list of elements. In this example, the circle is labelized by 1 while the edges of the square by 0 .

The element can be also a triangle

```
d = {'box':{'x': [0, 1], 'y': [0, 1], 'label':0},
    'elements':[pyLBM.Triangle((0.,0.), (0.,.5), (.5, 0.), label = 1)],
}
g = pyLBM.Geometry(d)
g.visualize(viewlabel=True)
```


or a parallelogram

```
d = {'box':{'x': [0, 3], 'y': [0, 1], 'label':[1, 2, 0, 0]},
    'elements':[pyLBM.Parallelogram((0.,0.), (.5,0.), (0., .5), label = 0)],
}
g = pyLBM.Geometry(d)
g.visualize()
```

Geometry

script

A complex cavity

A complex geometry can be build by using a list of elements. In this example, the box is fixed to the unit square $[0,1]^{2}$. A square hole is added with the argument isfluid=False. A strip and a circle are then added with the argument isfluid=True. Finally, a square hole is put. The value of elements contains the list of all the previous elements. Note that the order of the elements in the list is relevant.

```
square = pyLBM.Parallelogram((.1, .1), (.8, 0), (0, . 8), isfluid=False)
strip = pyLBM.Parallelogram((0, . 4), (1, 0), (0, . 2), isfluid=True)
circle = pyLBM.Circle((.5, .5), .25, isfluid=True)
inner_square = pyLBM.Parallelogram((.4, .5), (.1, .1), (.1, -.1), isfluid=False)
d = {'box':{'x': [0, 1], 'y': [0, 1], 'label':0},
    'elements':[square, strip, circle, inner_square],
}
g = pyLBM.Geometry(d)
g.visualize()
```

Once the geometry is built, it can be modified by adding or deleting other elements. For instance, the four corners of the cavity can be rounded in this way.

```
g.add_elem(pyLBM.Parallelogram((0.1, 0.9), (0.05, 0), (0, -0.05), isfluid=True))
g.add_elem(pyLBM.Circle((0.15, 0.85), 0.05, isfluid=False))
g.add_elem(pyLBM.Parallelogram((0.1, 0.1), (0.05, 0), (0, 0.05), isfluid=True))
```

```
g.add_elem(pyLBM.Circle((0.15, 0.15), 0.05, isfluid=False))
g.add_elem(pyLBM.Parallelogram((0.9, 0.9), (-0.05, 0), (0, -0.05), isfluid=True))
g.add_elem(pyLBM.Circle((0.85, 0.85), 0.05, isfluid=False))
g.add_elem(pyLBM.Parallelogram((0.9, 0.1), (-0.05, 0), (0, 0.05), isfluid=True))
g.add_elem(pyLBM.Circle((0.85, 0.15), 0.05, isfluid=False))
g.visualize()
```

Geometry

Examples in 3D

```
script
```

The cube $[0,1]^{3}$

```
d = {'box':{'x': [0, 1], 'Y': [0, 1], 'z':[0, 1], 'label':list(range(6)) }}
g = pyLBM.Geometry(d)
g.visualize(viewlabel=True)
```


The cube $[0,1]^{3}$ is created by the dictionary with the key box. The result is then visualized by using the method visualize.

We then add the labels on each edge of the square through a list of integers with the conventions:

- first for the left $\left(x=x_{\min }\right)$
- third for the bottom $\left(y=y_{\text {min }}\right)$
- fifth for the front $\left(z=z_{\min }\right)$
- second for the right $\left(x=x_{\max }\right)$
- fourth for the top $\left(y=y_{\max }\right)$
- sixth for the back $\left(z=z_{\text {max }}\right)$

If all the labels have the same value, a shorter solution is to give only the integer value of the label instead of the list. If no labels are given in the dictionary, the default value is -1 .

The cube $[0,1]^{3}$ with a hole

```
d = {
    'box':{'x': [0, 1], 'y': [0, 1], 'z':[0, 1], 'label':0},
    'elements':[pyLBM.Sphere((.5,.5,.5), .25, label=1)],
}
g = pyLBM.Geometry(d)
g.visualize(viewlabel=True)
```


The cube $[0,1]^{3}$ and the spherical hole are created by the dictionary with the keys box and elements. The result is then visualized by using the method visualize.

The Domain of the simulation

With pyLBM, the numerical simulations can be performed in a domain with a complex geometry. The creation of the geometry from a dictionary is explained here. All the informations needed to build the domain are defined through a dictionary and put in a object of the class Domain.

The domain is built from three types of informations:

- a geometry (class Geometry),
- a stencil (class Stencil),
- a space step (a float for the grid step of the simulation).

The domain is a uniform cartesian discretization of the geometry with a grid step $d x$. The whole box is discretized even if some elements are added to reduce the domain of the computation. The stencil is necessary in order to know the maximal velocity in each direction so that the corresponding number of phantom cells are added at the borders of the domain (for the treatment of the boundary conditions). The user can get the coordinates of the points in the domain by the fields x, y, and z. By convention, if the spatial dimension is one, $y=z=N o n e$; and if it is two, $z=N o n e$.

Several examples of domains can be found in demo/examples/domain/

Examples in 1D

```
script
```

The segment $[0,1]$ with a $D_{1} Q_{3}$

```
dico = {
    'box':{'x': [0, 1], 'label':0},
    'space_step':0.1,
    'schemes':[{'velocities':list(range(3)) }],
}
dom = pyLBM.Domain(dico)
dom.visualize()
```


Domain

The segment $[0,1]$ is created by the dictionary with the key box. The stencil is composed by the velocity $v_{0}=0$, $v_{1}=1$, and $v_{2}=-1$. One phantom cell is then added at the left and at the right of the domain. The space step $d x$ is taken to 0.1 to allow the visualization. The result is then visualized with the distance of the boundary points by using the method visualize.

```
script
```

The segment $[0,1]$ with a $D_{1} Q_{5}$

```
dico = {
    'box':{'x': [0, 1], 'label':0},
    'space_step':0.1,
    'schemes':[{'velocities':list(range(5)) }],
}
dom = pyLBM.Domain(dico)
dom.visualize()
```


Domain

The segment $[0,1]$ is created by the dictionary with the key box. The stencil is composed by the velocity $v_{0}=0$, $v_{1}=1, v_{2}=-1, v_{3}=2, v_{4}=-2$. Two phantom cells are then added at the left and at the right of the domain. The space step $d x$ is taken to 0.1 to allow the visualization. The result is then visualized with the distance of the boundary points by using the method visualize.

Examples in 2D

```
script
```

The square $[0,1]^{2}$ with a $D_{2} Q_{9}$

```
dico = {
    'box':{'x': [0, 1], 'y': [0, 1], 'label':0},
```

```
    'space_step':0.1,
    'schemes':[{'velocities':list(range(9)) }],
}
dom = pyLBM.Domain(dico)
dom.visualize()
dom.visualize(view_distance=True)
```


Domain

The square $[0,1]^{2}$ is created by the dictionary with the key box. The stencil is composed by the nine velocities

$$
\begin{gather*}
v_{0}=(0,0), \\
v_{1}=(1,0), v_{2}=(0,1), v_{3}=(-1,0), v_{4}=(0,-1), \tag{1.1}\\
v_{5}=(1,1), v_{6}=(-1,1), v_{7}=(-1,-1), v_{8}=(1,-1)
\end{gather*}
$$

One phantom cell is then added all around the square. The space step $d x$ is taken to 0.1 to allow the visualization. The result is then visualized by using the method visualize. This method can be used without parameter: the domain is visualize in white for the fluid part (where the computation is done) and in black for the solid part (the phantom cells or the obstacles). An optional parameter view_distance can be used to visualize more precisely the points (a black circle inside the domain and a square outside). Color lines are added to visualize the position of the border: for each point that can reach the border for a given velocity in one time step, the distance to the border is computed.

```
script 1
```

A square with a hole with a $D_{2} Q_{13}$
The unit square $[0,1]^{2}$ can be holed with a circle. In this example, a solid disc lies in the fluid domain defined by a circle with a center of $(0.5,0.5)$ and a radius of 0.125

```
dico = {
    'box':{'x': [0, 2], 'y': [0, 1], 'label':0},
    'elements':[pyLBM.Circle((0.5,0.5), 0.2)],
    'space_step':0.05,
    'schemes':[{'velocities':list(range(13)) }],
```

```
}
dom = pyLBM.Domain(dico)
dom.visualize()
dom.visualize(view_distance=True)
```

Domain

Domain

script

A step with a $D_{2} Q_{9}$
A step can be build by removing a rectangle in the left corner. For a $D_{2} Q_{9}$, it gives the following domain.

```
dico = {
    'box':{'x': [0, 3], 'y': [0, 1], 'label':0},
    'elements':[pyLBM.Parallelogram((0.,0.), (.5,0.), (0., .5), label=1)],
    'space_step':0.125,
    'schemes':[{'velocities':list(range(9)) }],
}
dom = pyLBM.Domain(dico)
dom.visualize()
dom.visualize(view_distance=True, label=1)
```

Domain

Domain

Note that the distance with the bound is visible only for the specified labels.

Examples in 3D
script

The cube $[0,1]^{3}$ with a $D_{3} Q_{19}$

```
dico = {
    'box':{'x': [0, 2], 'y': [0, 2], 'z':[0, 2], 'label':0},
    'space_step':.5,
    'schemes':[{'velocities':list(range(19))}]
}
dom = pyLBM.Domain(dico)
dom.visualize()
dom.visualize(view_distance=True)
```


The cube $[0,1]^{3}$ is created by the dictionary with the key box and the first 19 th velocities. The result is then visualized by using the method visualize.

The cube with a hole with a $D_{3} Q_{19}$

```
dico = {
    'box':{'x': [0, 2], 'y': [0, 2], 'z':[0, 2], 'label':0},
    'elements':[pyLBM.Sphere((1,1,1), 0.5, label = 1)],
    'space_step':.5,
    'schemes':[{'velocities':list(range(19)) }]
}
dom = pyLBM.Domain(dico)
dom.visualize()
dom.visualize(view_distance=False, view_bound=True, label=1, view_in=False, view_
Out=False)
```


The Scheme

With pyLBM, elementary schemes can be gathered and coupled through the equilibrium in order to simplify the implementation of the vectorial schemes. Of course, the user can implement a single elementary scheme and then recover the classical framework of the d'Humières schemes.

For pyLBM, the scheme is performed through a dictionary. The generalized d'Humières framework for vectorial schemes is used [dH92], [G14]. In the first section, we describe how build an elementary scheme. Then the vectorial schemes are introduced as coupled elementary schemes.

The elementary schemes

Let us first consider a regular lattice L in dimension d with a typical mesh size $d x$, and the time step $d t$. The scheme velocity λ is then defined by $\lambda=d x / d t$. We introduce a set of q velocities adapted to this lattice $\left\{v_{0}, \ldots, v_{q-1}\right\}$, that is to say that, if x is a point of the lattice L, the point $x+v_{j} d t$ is on the lattice for every $j \in\{0, \ldots, q-1\}$.

The aim of the $D d Q q$ scheme is to compute a distribution function vector $\boldsymbol{f}=\left(f_{0}, \ldots, f_{q-1}\right)$ on the lattice L at discret values of time. The scheme splits into two phases: the relaxation and the transport. That is, the passage from the time t to the time $t+d t$ consists in the succession of these two phases.

- the relaxation phase

This phase, also called collision, is local in space: on every site x of the lattice, the values of the vector \boldsymbol{f} are modified, the result after the collision being denoted by f^{\star}. The operator of collision is a linear operator of relaxation toward an equilibrium value denoted $f^{\text {eq }}$.
pyLBM uses the framework of d'Humières: the linear operator of the collision is diagonal in a special basis called moments denoted by $\boldsymbol{m}=\left(m_{0}, \ldots, m_{q-1}\right)$. The change-of-basis matrix M is such that $\boldsymbol{m}=M \boldsymbol{f}$ and $\boldsymbol{f}=M^{-1} \boldsymbol{m}$. In the basis of the moments, the collision operator then just reads

$$
m_{k}^{\star}=m_{k}-s_{k}\left(m_{k}-m_{k}^{\mathrm{eq}}\right), \quad 0 \leqslant k \leqslant q-1
$$

where s_{k} is the relaxation parameter associated to the kth moment. The kth moment is said conserved during the collision if the associated relaxation parameter $s_{k}=0$.

By analogy with the kinetic theory, the change-of-basis matrix M is defined by a set of polynomials with d variables $\left(P_{0}, \ldots, P_{q-1}\right)$ by

$$
M_{i j}=P_{i}\left(v_{j}\right)
$$

- the transport phase

This phase just consists in a shift of the indices and reads

$$
f_{j}(x, t+d t)=f_{j}^{\star}\left(x-v_{j} d t, t\right), \quad 0 \leqslant j \leqslant q-1
$$

Notations

The scheme is defined and build through a dictionary in pyLBM. Let us first list the several key words of this dictionary:

- dim: the spatial dimension. This argument is optional if the geometry is known, that is if the dimension can be computed through the list of the variables;
- scheme_velocity: the velocity of the scheme denoted by λ in the previous section and defined as the spatial step over the time step $(\lambda=d x / d t)$;
- schemes: the list of the schemes. In pyLBM, several coupled schemes can be used, the coupling being done through the equilibrium values of the moments. Some examples with only one scheme and with more than one schemes are given in the next sections. Each element of the list should be a dictionay with the following key words:
- velocities: the list of the velocity indices,
- conserved_moments: the list of the conserved moments (list of symbolic variables),
- polynomials: the list of the polynomials that define the moments, the polynomials are built with the symbolic variables X, Y, and Z,
- equilibrium: the list of the equilibrium value of the moments,
- relaxation_parameters: the list of the relaxation parameters, (by convention, the relaxation parameter of a conserved moment is taken to 0).

Examples in 1D

script

$D_{1} Q_{2}$ for the advection

A velocity $c \in \mathbb{R}$ being given, the advection equation reads

$$
\partial_{t} u(t, x)+c \partial_{x} u(t, x)=0, \quad t>0, x \in \mathbb{R}
$$

Taken for instance $c=0.5$, the following scheme can be used:

```
import sympy as sp
import pyLBM
u, X = sp.symbols('u, X')
d = {
    'dim':1,
    'scheme_velocity':1.,
    'schemes':[
        {
            'velocities': [1, 2],
            'conserved_moments':u,
            'polynomials': [1, X],
            'equilibrium': [u, . 5*u],
            'relaxation_parameters': [0., 1.9],
            },
    ],
}
s = pyLBM.Scheme(d)
print(s)
```

The dictionary d is used to set the dimension to 1 , the scheme velocity to 1 . The used scheme has two velocities: the first one $v_{0}=1$ and the second one $v_{1}=-1$. The polynomials that define the moments are $P_{0}=1$ and $P_{1}=X$ so that the matrix of the moments is

$$
M=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

with the convention $M_{i j}=P_{i}\left(v_{j}\right)$. Then, there are two distribution functions f_{0} and f_{1} that move at the velocities v_{0} and v_{1}, and two moments $m_{0}=f_{0}+f_{1}$ and $m_{1}=f_{0}-f_{1}$. The first moment m_{0} is conserved during the relaxation phase (as the associated relaxation parameter is set to 0), while the second moment m_{1} relaxes to its equilibrium value $0.5 m_{0}$ with a relaxation parameter 1.9 by the relation

$$
m_{1}^{\star}=m_{1}-1.9\left(m_{1}-0.5 m_{0}\right) .
$$

```
script
```


$D_{1} Q_{2}$ for Burger's

The Burger's equation reads

$$
\partial_{t} u(t, x)+\frac{1}{2} \partial_{x} u^{2}(t, x)=0, \quad t>0, x \in \mathbb{R}
$$

The following scheme can be used:

```
import sympy as sp
import pyLBM
u, X = sp.symbols('u, X')
d = {
    'dim':1,
    'scheme_velocity':1.,
```

```
    'schemes':[
        {
            'velocities': [1, 2],
            'conserved_moments':u,
            'polynomials': [1, X],
            'equilibrium': [u, .5*u**2],
            'relaxation_parameters': [0., 1.9],
    },
    ],
}
s = pyLBM.Scheme(d)
print(s)
```

The same dictionary has been used for this application with only one modification: the equilibrium value of the second moment $m_{1}^{\text {eq }}$ is taken to $\frac{1}{2} m_{0}^{2}$.
script

$D_{1} Q_{3}$ for the wave equation

The wave equation is rewritten into the system of two partial differential equations

$$
\begin{cases}\partial_{t} u(t, x)+\partial_{x} v(t, x)=0, & t>0, x \in \mathbb{R} \\ \partial_{t} v(t, x)+c^{2} \partial_{x} u(t, x)=0, & t>0, x \in \mathbb{R}\end{cases}
$$

The following scheme can be used:

```
import sympy as sp
import pyLBM
u, v, X = sp.symbols('u, v, X')
c}=0.
d = {
    'dim':1,
    'scheme_velocity':1.,
    'schemes':[{
        'velocities': [0, 1, 2],
        'conserved_moments':[u, v],
        'polynomials': [1, X, 0.5*X**2],
        'equilibrium': [u, v, . 5*c**2*u],
        'relaxation_parameters': [0., 0., 1.9],
        },
    ],
}
s = pyLBM.Scheme(d)
print(s)
```


Examples in 2D

```
script
```


$D_{2} Q_{4}$ for the advection

A velocity $\left(c_{x}, c_{y}\right) \in \mathbb{R}^{2}$ being given, the advection equation reads

$$
\partial_{t} u(t, x, y)+c_{x} \partial_{x} u(t, x, y)+c_{y} \partial_{y} u(t, x, y)=0, \quad t>0, x, y \in \mathbb{R}
$$

Taken for instance $c_{x}=0.1, c_{y}=0.2$, the following scheme can be used:

```
import sympy as sp
import pyLBM
u, X, Y = sp.symbols('u, X, Y')
d = {
    'dim':2,
    'scheme_velocity':1.,
    'schemes':[{
        'velocities': [1, 2, 3, 4],
        'conserved_moments':u,
        'polynomials': [1, X, Y, X**2-Y**2],
        'equilibrium': [u, .1*u, .2*u, 0.],
        'relaxation_parameters': [0., 1.9, 1.9, 1.4],
        },
    ],
}
s = pyLBM.Scheme(d)
print(s)
```

The dictionary d is used to set the dimension to 2 , the scheme velocity to 1 . The used scheme has four velocities: $v_{0}=(1,0), v_{1}=(0,1), v_{2}=(-1,0)$, and $v_{3}=(0,-1)$. The polynomials that define the moments are $P_{0}=1$, $P_{1}=X, P_{2}=Y$, and $P_{3}=X^{2}-Y^{2}$ so that the matrix of the moments is

$$
M=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
1 & -1 & 1 & -1
\end{array}\right)
$$

with the convention $M_{i j}=P_{i}\left(v_{j}\right)$. Then, there are four distribution functions $f_{j}, 0 \leq j \leq 3$ that move at the velocities v_{j}, and four moments $m_{k}=\sum_{j=0}^{3} M_{k j} f_{j}$. The first moment m_{0} is conserved during the relaxation phase (as the associated relaxation parameter is set to 0), while the other moments $m_{k}, 1 \leq k \leq 3$ relaxe to their equilibrium values by the relations

$$
\left\{\begin{array}{l}
m_{1}^{\star}=m_{1}-1.9\left(m_{1}-0.1 m_{0}\right), \\
m_{2}^{\star}=m_{2}-1.9\left(m_{2}-0.2 m_{0}\right), \\
m_{3}^{\star}=(1-1.4) m_{3} .
\end{array}\right.
$$

script

$D_{2} Q_{9}$ for Navier-Stokes

The system of the compressible Navier-Stokes equations reads

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\partial_{t}(\rho \boldsymbol{u})+\nabla \cdot(\rho \boldsymbol{u} \otimes \boldsymbol{u})+\nabla p=\kappa \nabla(\nabla \cdot \boldsymbol{u})+\eta \nabla \cdot\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}-\nabla \cdot \boldsymbol{u} \mathbb{I}\right)
\end{array}\right.
$$

where we removed the dependency of all unknown on the variables (t, x, y). The vector \boldsymbol{x} stands for (x, y) and, if ψ is a scalar function of \boldsymbol{x} and $\phi=\left(\phi_{x}, \phi_{y}\right)$ is a vectorial function of \boldsymbol{x}, the usual partial differential operators read

$$
\begin{aligned}
& \nabla \psi=\left(\partial_{x} \psi, \partial_{y} \psi\right) \\
& \nabla \cdot \boldsymbol{\phi}=\partial_{x} \phi_{x}+\partial_{y} \phi_{y} \\
& \nabla \cdot(\boldsymbol{\phi} \otimes \boldsymbol{\phi})=\left(\nabla \cdot\left(\phi_{x} \phi\right), \nabla \cdot\left(\phi_{y} \phi\right)\right)
\end{aligned}
$$

The coefficients κ and η are the bulk and the shear viscosities.
The following dictionary can be used to simulate the system of Navier-Stokes equations in the limit of small velocities:

```
from six.moves import range
import sympy as sp
import pyLBM
rho, qx, qy, X, Y = sp.symbols('rho, qx, qy, X, Y')
dx = 1./256 # space step
eta =1.25e-5 # shear viscosity
kappa = 10*eta # bulk viscosity
sb = 1./(.5+kappa*3./dx)
ss = 1./(.5+eta*3./dx)
d = {
    'dim':2,
    'scheme_velocity':1.,
    'schemes':[{
        'velocities':list(range(9)),
        'conserved_moments':[rho, qx, qy],
        'polynomials':[
            1, X, Y,
            3* (X**2+Y**2)-4,
            (9*(X**2+Y**2)**2-21*(X**2+Y**2) + 8)/2,
            3*X* (X** 2+Y**2) - 5*X, 3*Y* (X**2+Y**2) - 5*Y,
            X**2-Y**2, X* Y
        ],
        'relaxation_parameters':[0., 0., 0., sb, sb, sb, sb, ss, ss],
        'equilibrium':[
            rho, qx, qy,
            -2*rho + 3*qx**2 + 3*qy**2,
            rho + 3/2*qx**2 + 3/2*qy**2,
            -qx, -qy,
            qx**2 - qy**2, qx*qy
        ],
    },],
}
s = pyLBM.Scheme(d)
print(s)
```

The scheme generated by the dictionary is the 9 velocities scheme with orthogonal moments introduced in [QdHL92]

Examples in 3D

script

$D_{3} Q_{6}$ for the advection

A velocity $\left(c_{x}, c_{y}, c_{z}\right) \in \mathbb{R}^{2}$ being given, the advection equation reads

$$
\partial_{t} u(t, x, y, z)+c_{x} \partial_{x} u(t, x, y, z)+c_{y} \partial_{y} u(t, x, y, z)+c_{z} \partial_{z} u(t, x, y, z)=0, \quad t>0, x, y, z \in \mathbb{R}
$$

Taken for instance $c_{x}=0.1, c_{y}=-0.1, c_{z}=0.2$, the following scheme can be used:

```
from six.moves import range
import sympy as sp
import pyLBM
u, X, Y, Z = sp.symbols('u, X, Y, Z')
cx, cy, cz = .1, -.1, . 2
d = {
    'dim':3,
    'scheme_velocity':1.,
    'schemes':[{
        'velocities': list(range(1,7)),
        'conserved_moments':u,
        'polynomials': [1, X, Y, Z, X**2-Y**2, X**2-Z**2],
        'equilibrium': [u, cx*u, cy*u, cz*u, 0., 0.],
        'relaxation_parameters': [0., 1.5, 1.5, 1.5, 1.5, 1.5],
        }, ],
}
s = pyLBM.Scheme(d)
print(s)
```

The dictionary d is used to set the dimension to 3 , the scheme velocity to 1 . The used scheme has six velocities: $v_{0}=(0,0,1), v_{1}=(0,0,-1), v_{2}=(0,1,0), v_{3}=(0,-1,0), v_{4}=(1,0,0)$, and $v_{5}=(-1,0,0)$. The polynomials that define the moments are $P_{0}=1, P_{1}=X, P_{2}=Y, P_{3}=Z, P_{4}=X^{2}-Y^{2}$, and $P_{5}=X^{2}-Z^{2}$ so that the matrix of the moments is

$$
M=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & -1 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & 1 & 1 \\
-1 & -1 & 0 & 0 & 1 & 1
\end{array}\right)
$$

with the convention $M_{i j}=P_{i}\left(v_{j}\right)$. Then, there are six distribution functions $f_{j}, 0 \leq j \leq 5$ that move at the velocities v_{j}, and six moments $m_{k}=\sum_{j=0}^{5} M_{k j} f_{j}$. The first moment m_{0} is conserved during the relaxation phase (as the associated relaxation parameter is set to 0), while the other moments $m_{k}, 1 \leq k \leq 5$ relaxe to their equilibrium values by the relations

$$
\left\{\begin{array}{l}
m_{1}^{\star}=m_{1}-1.5\left(m_{1}-0.1 m_{0}\right), \\
m_{2}^{\star}=m_{2}-1.5\left(m_{2}+0.1 m_{0}\right), \\
m_{3}^{\star}=m_{3}-1.5\left(m_{3}-0.2 m_{0}\right), \\
m_{4}^{\star}=(1-1.5) m_{4} \\
m_{5}^{\star}=(1-1.5) m_{5} .
\end{array}\right.
$$

The vectorial schemes

With pyLBM, vectorial schemes can be built easily by using a list of elementary schemes. Each elementary scheme is given by a dictionary as in the previous section. The conserved moments of all the elementary schemes can be used in the equilibrium values of the non conserved moments, in order to couple the schemes. For more details on the vectorial schemes, the reader can refer to [G14].

Examples in 1D

script
$D_{1} Q_{2,2}$ for the shallow water equation

A constant $g \in \mathbb{R}$ being given, the shallow water system reads

$$
\begin{array}{ll}
\partial_{t} h(t, x)+\partial_{x} q(t, x)=0, & t>0, x \in \mathbb{R}, \\
\partial_{t} q(t, x)+\partial_{x}\left(q^{2}(t, x) / h(t, x)+g h^{2}(t, x) / 2\right)=0, & t>0, x \in \mathbb{R}
\end{array}
$$

Taken for instance $g=1$, the following scheme can be used:

```
import sympy as sp
import pyLBM
# parameters
h, q, X, LA, g = sp.symbols('h, q, X, LA, g')
la = 2. # velocity of the scheme
s_h, s_q = 1.7, 1.5 # relaxation parameters
d = {
    'dim': 1,
    'scheme_velocity': la,
    'schemes':[
            {
            'velocities': [1, 2],
            'conserved_moments': h,
            'polynomials': [1, LA*X],
            'relaxation_parameters': [0, s_h],
            'equilibrium': [h, q],
            },
            {
            'velocities': [1, 2],
            'conserved_moments': q,
            'polynomials': [1, LA*X],
            'relaxation_parameters': [0, s_q],
            'equilibrium': [q, q**2/h+.5*g*h**2],
        },
    ],
    'parameters': {LA: la, g: 1.},
}
s = pyLBM.Scheme(d)
print(s)
```

Two elementary schemes have been built, these two schemes are identical except for the equilibrium values of the non conserved moment and of the relaxation parameter: The first one is used to simulate the equation on h and the second one to simulate the equation on q. For each scheme, the equilibrium value of the non conserved moment is equal to the flux of the corresponding equation: the equilibrium value of the kth scheme can so depend on all the conserved moments (and not only on those of the kth scheme).

Examples in 2D

script

$D_{2} Q_{4,4,4}$ for the shallow water equation

A constant $g \in \mathbb{R}$ being given, the shallow water system reads

$$
\begin{array}{rlrl}
\partial_{t} h(t, x, y) & +\partial_{x} q_{x}(t, x, y)+\partial_{y} q_{y}(t, x, y)=0, & t>0, x, y \in \mathbb{R}, \\
\partial_{t} q_{x}(t, x, y) & +\partial_{x}\left(q_{x}^{2}(t, x, y) / h(t, x, y)+g h^{2}(t, x, y) / 2\right) & \\
& +\partial_{y}\left(q_{x}(t, x, y) q_{y}(t, x, y) / h(t, x, y)\right)=0, & & t>0, x, y \in \mathbb{R}, \\
\partial_{t} q_{y}(t, x, y) & +\partial_{x}\left(q_{x}(t, x, y) q_{y}(t, x, y) / h(t, x, y)\right) & & \\
& +\partial_{y}\left(q_{y}^{2}(t, x, y) / h(t, x, y)+g h^{2}(t, x, y) / 2\right)=0, & & t>0, x, y \in \mathbb{R} .
\end{array}
$$

Taken for instance $g=1$, the following scheme can be used:

```
import sympy as sp
import pyLBM
X, Y, LA, g = sp.symbols('X, Y, LA, g')
h, qx, qy = sp.symbols('h, qx, qy')
# parameters
la = 4 # velocity of the scheme
s_h = [0., 2., 2., 1.5]
s_q}=[0., 1.5, 1.5, 1.2
vitesse = [1,2,3,4]
polynomes = [1, LA*X, LA*Y, X**2-Y**2]
d = {
    'dim': 2,
    'scheme_velocity': la,
    'schemes':[
            {
            'velocities': vitesse,
            'conserved_moments': h,
            'polynomials': polynomes,
            'relaxation_parameters': s_h,
            'equilibrium': [h, qx, qy, 0.],
            },
            {
            'velocities': vitesse,
            'conserved_moments': qx,
            'polynomials': polynomes,
            'relaxation_parameters': s_q,
            'equilibrium': [qx, qx**2/h + 0.5*g*h**2, qx*qy/h, 0.],
            },
            {
            'velocities': vitesse,
            'conserved_moments': qy,
            'polynomials': polynomes,
            'relaxation_parameters': s_q,
            'equilibrium': [qy, qy*qx/h, qy**2/h + 0.5*g*h**2, 0.],
            },
    ],
    'parameters': {LA: la, g: 1.},
}
s = pyLBM.Scheme(d)
print(s)
```

Three elementary schemes have been built, these three schemes are identical except for the equilibrium values of the non conserved moment and of the relaxation parameter: The first one is used to simulate the equation on h and the others to simulate the equation on q_{x} and q_{y}. For each scheme, the equilibrium value of the non conserved moment is equal to the flux of the corresponding equation: the equilibrium value of the kth scheme can so depend on all the conserved moments (and not only on those of the kth scheme).

The Boundary Conditions

The simulations are performed in a bounded domain with optional obstacles. Boundary conditions have then to be imposed on all the bounds. With pyLBM, the user can use the classical boundary conditions (classical for the lattice Boltzmann method) that are already implemented or implement his own conditions.

Note that periodical boundary conditions are used as default conditions. The corresponding label is -1 .
For a lattice Boltzmann method, we have to impose the incoming distribution functions on nodes outside the domain. We describe

- first, how the bounce back, the anti bounce back, and the Neumann conditions can be used,
- second, how personal boundary conditions can be implemented.

The classical conditions

The bounce back and anti bounce back conditions

The bounce back condition (resp. anti bounce back) is used to impose the odd moments (resp. even moments) on the bounds.

The Neumann conditions

How to implement new conditions

The storage

When you use pyLBM, a generated code is performed using the descritpion of the scheme(s) (the velocities, the polynomials, the conserved moments, the equilibriums, ...). There are several generators already implemented

- NumPy
- Cython
- Pythran (work in progress)
- Loo.py (work in progress)

To have best performance following the generator, you need a specific storage of the moments and distribution functions arrays. For example, it is preferable to have a storage like $\left[n_{v}, n_{x}, n_{y}, n_{z}\right]$ in NumPy n_{v} is the number of velocities and n_{x}, n_{y} and n_{z} the grid size. It is due to the vectorized form of the algorithm. Whereas for Cython, it is preferable to have the storage $\left[n_{x}, n_{y}, n_{z}, n_{v}\right]$ using the pull algorithm.

So, we have implemented a storage class that always gives to the user the same access to the moments and disribution functions arrays but with a different storage in memory for the generator. This class is called Array.

It is really simple to create an array. You just need to give

- the number of velocities,
- the global grid size,
- the size of the fictitious point in each direction,
- the order of $\left[n_{v}, n_{x}, n_{y}, n_{z}\right]$ with the following indices
- 0: n_{v}
- 1: n_{x}
- 2: n_{y}
- 3: n_{z}

The default order is $\left[n_{v}, n_{x}, n_{y}, n_{z}\right]$.

- the mpi topology (optional)
- the type of the data (optional)

The default is double

2D example

Suppose that you want to create an array with a grid size $[5,10]$ and 9 velocities with 1 cell in each direction for the fictitious domain.

```
[[[[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
    [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
    [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
    [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
    [0.0.0.0.0. 0. 0. 0. 0. 0. 0.]]
    [[ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
    [ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
    [ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
    [ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
    [ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]
    [[ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]
    [ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]
    [ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]
    [ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]
    [ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]
    [[ 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]
    [ 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]
    [ 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]
    [ 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]
    [ 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]]
    [[ 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.]
    [ 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.]
    [ 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.]
    [ 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.]
    [ 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.]]
    [[ 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.]
    [ 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.]
```

```
[ 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.]
    [ 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.]
    [ 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.]]
[[ 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.]
    [ 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.]
    [ 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.]
    [ 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.]
    [ 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.]]
[[ 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.]
    [ 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.]
    [ 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.]
    [ 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.]
    [7. 7. 7. 7. 7. 7. 7. 7. 7. 7.]]
[[ 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.]
    [ 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.]
    [ 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.]
    [ 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.]
    [ 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.]]]
```

```
[[[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
    [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
    [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
    [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
    [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]
    [[ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
    [ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
    [ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
    [ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
    [ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]
    [[ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]
    [ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]
    [ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]
    [ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]
    [ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]
    [[ 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]
    [ 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]
    [ 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]
    [ 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]
    [ 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]]
    [[ 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.]
    [ 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.]
    [ 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.]
    [ 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.]
    [ 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.]]
    [[ 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.]
    [ 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.]
    [ 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.]
    [ 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.]
    [ 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.]]
```


You can see that the access of the data is the same for a et b whereas the sorder is not the same.
If we look at the array attribute which is the real storage of our data

```
(9, 5, 10)
```

```
(10, 5, 9)
```

you can see that it is not the same and it is exactly what we want. To do that, we use the swapaxes of numpy and we use this representation to have an access to our data.

Access to the data with the conserved moments

When you discribe your scheme, you define the conserved moments. It is usefull to have a direct acces to these moments by giving their name and not their indices in the array. So, it is possible to specify where are the conserved moments in the array.

Let define conserved moments using sympy symbol.
We indicate to pyLBM where are located these conserved moments in our array by giving a list of two elements: the first one is the scheme number and the second one the index in this scheme.

```
array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
    [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
    [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
    [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
    [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
```

array ([[2.	2.,	2.,	2.,	2.,	2.,	2.,	2.,	2.,	2.],
[2.,	2.,	2.,	2.,	2.,	2.,	2.,	2.,	2.,	2.],
[2.,	2.,	2.,	2.,	2.,	2.,	2.,	2.	2.	2.],
[2.,	2.	2.	2.	2.	2.	2.	2.	2.	2.],
[2.,	2.	2.	2.,	2.	2.	2.,	2.	2.	2.].]


```
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]])
```


Tutorial

Transport in 1D

In this tutorial, we test the most simple lattice Boltzmann scheme $D_{1} Q_{2}$ on two classical hyperbolic scalar equations: the advection equation and the Burger's equation.

The advection equation

The problem reads

$$
\partial_{t} u+c \partial_{x} u=0, \quad t>0, \quad x \in(0,1)
$$

where c is a constant scalar (typically $c=1$). Additional boundary and initial conditions will be given in the following. The numerical simulation of this equation by a lattice Boltzmann scheme consists in the approximation of the solution on discret points of $(0,1)$ at discret instants.

The spatial mesh is defined by using a numpy array. To simplify, the mesh is supposed to be uniform.
First, we import the package numpy and we create the spatial mesh. One phantom cell has to be added at each edge of the domain for the treatment of the boundary conditions.

To simulate this equation, we use the $\mathrm{D}_{1} \mathrm{Q}_{2}$ scheme given by

- two velocities $v_{0}=-1, v_{1}=1$, with associated distribution functions f_{0} and f_{1},
- a space step Δx and a time step Δt, the ration $\lambda=\Delta x / \Delta t$ is called the scheme velocity,
- two moments $m_{0}=\sum_{i=0}^{1} f_{i}$ and $m_{1}=\lambda \sum_{i=0}^{1} v_{i} f_{i}$ and their equilibrium values $m_{0}^{e}=m_{0}, m_{1}^{e}=c m_{0}$,
- a relaxation parameter s lying in $[0,2]$.

In order to prepare the formalism of the package pyLBM, we introduce the two polynomials that define the moments: $P_{0}=1$ and $P_{1}=\lambda X$, such that

$$
m_{k}=\sum_{i=0}^{1} P_{k}\left(v_{i}\right) f_{i} .
$$

The transformation $\left(f_{0}, f_{1}\right) \mapsto\left(m_{0}, m_{1}\right)$ is invertible if, and only if, the polynomials $\left(P_{0}, P_{1}\right)$ is a free set over the stencil of velocities.

The lattice Boltzmann method consists to compute the distribution functions f_{0} and f_{1} in each point of the lattice x and at each time $t^{n}=n \Delta t$. A step of the scheme can be read as a splitting between the relaxation phase and the transport phase:

- relaxation:

$$
m_{1}^{\star}(t, x)=(1-s) m_{1}(t, x)+s m_{1}^{e}(t, x) .
$$

- m2f:

$$
\begin{aligned}
& f_{0}^{\star}(t, x)=\left(m_{0}(t, x)-m_{1}^{\star}(t, x) / \lambda\right) / 2, \\
& f_{1}^{\star}(t, x)=\left(m_{0}(t, x)+m_{1}^{\star}(t, x) / \lambda\right) / 2 .
\end{aligned}
$$

- transport:

$$
f_{0}(t+\Delta t, x)=f_{0}^{\star}(t, x+\Delta x), \quad f_{1}(t+\Delta t, x)=f_{1}^{\star}(t, x-\Delta x) .
$$

- f2m:

$$
\begin{aligned}
& m_{0}(t+\Delta t, x)=f_{0}(t+\Delta t, x)+f_{1}(t+\Delta t, x), \\
& m_{1}(t+\Delta t, x)=-\lambda f_{0}(t+\Delta t, x)+\lambda f_{1}(t+\Delta t, x) .
\end{aligned}
$$

The moment of order $0, m_{0}$, being the only one conserved during the relaxation phase, the equivalent equation of this scheme reads at first order

$$
\partial_{t} m_{0}+\partial_{x} m_{1}^{e}=\mathcal{O}(\Delta t)
$$

We implement a function equilibrium that computes the equilibrium value m_{1}^{e}, the moment of order $0, m_{0}$, and the velocity c being given in argument.
Then, we create two vectors m_{0} and m_{1} with shape the shape of the mesh and initialize them. The moment of order 0 should contain the initial value of the unknown u and the moment of order 1 the corresponding equilibrium value.
We create also two vectors f_{0} and f_{1}.
And finally, we implement the four elementary functions f2m, relaxation, m 2 f , and transport. In the transport function, the boundary conditions should be implemented: we will use periodic conditions by copying the informations in the phantom cells.
We compute and we plot the numerical solution at time $T_{f}=2$.

Advection

The Burger's equation

The problem reads

$$
\partial_{t} u+\frac{1}{2} \partial_{x} u^{2}=0, \quad t>0, \quad x \in(0,1) .
$$

The previous $\mathrm{D}_{1} \mathrm{Q}_{2}$ scheme can simulate the Burger's equation by modifying the equilibrium value of the moment of order $1 m_{1}^{e}$. It now reads $m_{1}^{e}=m_{0}{ }^{2} / 2$.

More generaly, the simulated equation is into the conservative form

$$
\partial_{t} u+\partial_{x} \varphi(u)=0, \quad t>0, \quad x \in(0,1),
$$

the equilibrium has to be taken to $m_{1}^{e}=\varphi\left(m_{0}\right)$.
We just have to modify the equilibrium and the initialization of the previous example to simulate the Burger's equation. The initial condition can be a discontinuous function in order to simulate Riemann problems. Note that the function $\mathrm{f} 2 \mathrm{~m}, \mathrm{~m} 2 \mathrm{f}$, relaxation, and transport are unchanged.

We can test different values of the relaxation parameter s. In particular, we observe that the scheme remains stable if $s \in[0,2]$. More s is small, more the numerical diffusion is important and if s is close to 2 , oscillations appear behind the shock.

In order to simulate a Riemann problem, the boundary conditions have to be modified. A classical way is to impose entry conditions for hyperbolic problems. The lattice Boltzmann methods lend themselves very well to that conditions: the scheme only needs the distributions corresponding to a velocity that goes inside the domain. Nevertheless, on a physical edge where the flux is going outside, a non physical distribution that goes inside has to be imposed. A first simple way is to leave the initial value: this is correct while the discontinuity does not reach the edge. A second way is to impose Neumann condition by repeating the inner value.

We modify the previous script to take into account these new boundary conditions.

The wave equation in 1D

In this tutorial, we test a very classical lattice Boltzmann scheme $D_{1} Q_{3}$ on the wave equation.
The problem reads

$$
\partial_{t t} \rho=c^{2} \partial_{x x} \rho, \quad t>0, \quad x \in(0,2 \pi)
$$

where c is a constant scalar. In this session, two different kinds of boundary conditions will be considered:

- periodic conditions $\rho(0)=\rho(2 \pi)$,
- Homogeneous Dirichlet conditions $\rho(0)=\rho(2 \pi)=0$.

The problem is transformed into a one order system:

$$
\begin{array}{ll}
\partial_{t} \rho+\partial_{x} q=0, & t>0, \\
\partial_{t} q+c^{2} \partial_{x} \rho=0, & t>0, \\
x \in(0,2 \pi) \\
\end{array}
$$

The scheme $D_{1} Q_{3}$
The numerical simulation of this equation by a lattice Boltzmann scheme consists in the approximation of the solution on discret points of $(0,2 \pi)$ at discret instants.
The spatial mesh is defined by using a numpy array. To simplify, the mesh is supposed to be uniform.
First, we import the package numpy and we create the spatial mesh. One phantom cell has to be added at each bound for the treatment of the boundary conditions.

To simulate this system of equations, we use the $D_{1} Q_{3}$ scheme given by

- three velocities $v_{0}=0, v_{1}=1$, and $v_{2}=-1$, with associated distribution functions f_{0}, f_{1}, and f_{2},
- a space step Δx and a time step Δt, the ration $\lambda=\Delta x / \Delta t$ is called the scheme velocity,
- three moments

$$
m_{0}=\sum_{i=0}^{2} f_{i}, \quad m_{1}=\lambda \sum_{i=0}^{2} v_{i} f_{i}, \quad m_{2}=\frac{\lambda^{2}}{2} \sum_{i=0}^{2} v_{i}^{2} f_{i}
$$

and their equilibrium values $m_{0}^{e}=m_{0}, m_{1}^{e}=m_{1}$, and $m_{2}^{e}=c^{2} / 2 m_{0}$.

- a relaxation parameter s lying in $[0,2]$.

In order to prepare the formalism of the package pyLBM, we introduce the three polynomials that define the moments: $P_{0}=1, P_{1}=\lambda X$, and $P_{2}=\lambda^{2} / 2 X^{2}$, such that

$$
m_{k}=\sum_{i=0}^{2} P_{k}\left(v_{i}\right) f_{i}
$$

The transformation $\left(f_{0}, f_{1}, f_{2}\right) \mapsto\left(m_{0}, m_{1}, m_{2}\right)$ is invertible if, and only if, the polynomials $\left(P_{0}, P_{1}, P_{2}\right)$ is a free set over the stencil of velocities.

The lattice Boltzmann method consists to compute the distribution functions f_{0}, f_{1}, and f_{2} in each point of the lattice x and at each time $t^{n}=n \Delta t$. A step of the scheme can be read as a splitting between the relaxation phase and the transport phase:

- relaxation:

$$
m_{2}^{\star}(t, x)=(1-s) m_{2}(t, x)+s m_{2}^{e}(t, x)
$$

- m2f:

$$
\begin{aligned}
f_{0}^{\star}(t, x) & =m_{0}(t, x)-2 m_{2}^{\star}(t, x) / \lambda^{2} \\
f_{1}^{\star}(t, x) & =m_{1}(t, x) /(2 \lambda)+m_{2}^{\star}(t, x) / \lambda^{2} \\
f_{2}^{\star}(t, x) & =-m_{1}(t, x) /(2 \lambda)+m_{2}^{\star}(t, x) / \lambda^{2}
\end{aligned}
$$

- transport:

$$
\begin{aligned}
& f_{0}(t+\Delta t, x)=f_{0}^{\star}(t, x) \\
& f_{1}(t+\Delta t, x)=f_{1}^{\star}(t, x-\Delta x) \\
& f_{2}(t+\Delta t, x)=f_{2}^{\star}(t, x+\Delta x) .
\end{aligned}
$$

- f 2 m :

$$
\begin{aligned}
& m_{0}(t+\Delta t, x)=f_{0}(t+\Delta t, x)+f_{1}(t+\Delta t, x)+f_{2}(t+\Delta t, x) \\
& m_{1}(t+\Delta t, x)=\lambda f_{1}(t+\Delta t, x)-\lambda f_{2}(t+\Delta t, x) \\
& m_{2}(t+\Delta t, x)=\frac{1}{2} \lambda^{2} f_{1}(t+\Delta t, x)+\frac{1}{2} \lambda^{2} f_{2}(t+\Delta t, x)
\end{aligned}
$$

The moments of order $0, m_{0}$, and of order $1, m_{1}$, being conserved during the relaxation phase, the equivalent equations of this scheme read at first order

$$
\begin{aligned}
& \partial_{t} m_{0}+\partial_{x} m_{1}=\mathcal{O}(\Delta t) \\
& \partial_{t} m_{1}+2 \partial_{x} m_{2}^{e}=\mathcal{O}(\Delta t)
\end{aligned}
$$

We implement a function equilibrium that computes the equilibrium value m_{2}^{e}, the moment of order $0, m_{0}$, and the velocity c being given in argument.

We create three vectors m_{0}, m_{1}, and m_{2} with shape the shape of the mesh and initialize them. The moments of order 0 and 1 should contain the initial value of the unknowns ρ and q, and the moment of order 2 the corresponding equilibrium value.
We create also three vectors f_{0}, f_{1} and f_{2}.

Periodic boundary conditions

We implement the four elementary functions f 2 m , relaxation, m 2 f , and transport. In the transport function, the boundary conditions should be implemented: we will use periodic conditions by copying the informations in the phantom cells.

We compute and we plot the numerical solution at time $T_{f}=2 \pi$.

Anti bounce back conditions

In order to take into account homogenous Dirichlet conditions over ρ, we introduce the bounce back conditions. At edge $x=0$, two points are involved: $x_{0}=-\Delta x / 2$ and $x_{1}=\Delta x / 2$. We impose $f_{1}\left(x_{0}\right)=-f_{2}\left(x_{1}\right)$. And at edge $x=2 \pi$, the two involved points are x_{N} and x_{N+1}. We impose $f_{2}\left(x_{N+1}\right)=-f_{1}\left(x_{N}\right)$.
We modify the transport function to impose anti bounce back conditions. We can compare the solutions obtained with

pyLBM Documentation, Release 0.3.0

the two different boundary conditions.

Final moments

The heat equation in 1D

In this tutorial, we test a very classical lattice Boltzmann scheme $\mathrm{D}_{1} \mathrm{Q}_{3}$ on the heat equation.

The problem reads

$$
\begin{gathered}
\partial_{t} u=\mu \partial_{x x} u, \quad t>0, \quad x \in(0,1), \\
u(0)=u(1)=0,
\end{gathered}
$$

where : math : ' μ 'isaconstantscalar.

The scheme $D_{1} Q_{3}$
The numerical simulation of this equation by a lattice Boltzmann scheme consists in the approximatation of the solution on discret points of $(0,1)$ at discret instants.

To simulate this system of equations, we use the $D_{1} Q_{3}$ scheme given by

- three velocities $v_{0}=0, v_{1}=1$, and $v_{2}=-1$, with associated distribution functions f_{0}, f_{1}, and f_{2},
- a space step Δx and a time step Δt, the ration $\lambda=\Delta x / \Delta t$ is called the scheme velocity,
- three moments

$$
m_{0}=\sum_{i=0}^{2} f_{i}, \quad m_{1}=\sum_{i=0}^{2} v_{i} f_{i}, \quad m_{2}=\frac{1}{2} \sum_{i=0}^{2} v_{i}^{2} f_{i}
$$

and their equilibrium values m_{0}^{e}, m_{1}^{e}, and m_{2}^{e}. * two relaxation parameters s_{1} and s_{2} lying in $[0,2]$.
In order to use the formalism of the package pyLBM, we introduce the three polynomials that define the moments: $P_{0}=1, P_{1}=X$, and $P_{2}=X^{2} / 2$, such that

$$
m_{k}=\sum_{i=0}^{2} P_{k}\left(v_{i}\right) f_{i}
$$

The transformation $\left(f_{0}, f_{1}, f_{2}\right) \mapsto\left(m_{0}, m_{1}, m_{2}\right)$ is invertible if, and only if, the polynomials $\left(P_{0}, P_{1}, P_{2}\right)$ is a free set over the stencil of velocities.

The lattice Boltzmann method consists to compute the distribution functions f_{0}, f_{1}, and f_{2} in each point of the lattice x and at each time $t^{n}=n \Delta t$. A step of the scheme can be read as a splitting between the relaxation phase and the transport phase:

- relaxation:

$$
\begin{aligned}
& m_{1}^{\star}(t, x)=\left(1-s_{1}\right) m_{1}(t, x)+s_{1} m_{1}^{e}(t, x) \\
& m_{2}^{\star}(t, x)=\left(1-s_{2}\right) m_{2}(t, x)+s_{2} m_{2}^{e}(t, x)
\end{aligned}
$$

- m2f:

$$
\begin{aligned}
f_{0}^{\star}(t, x) & =m_{0}(t, x)-2 m_{2}^{\star}(t, x) \\
f_{1}^{\star}(t, x) & =m_{1}^{\star}(t, x) / 2+m_{2}^{\star}(t, x) \\
f_{2}^{\star}(t, x) & =-m_{1}^{\star}(t, x) / 2+m_{2}^{\star}(t, x)
\end{aligned}
$$

- transport:

$$
\begin{aligned}
f_{0}(t+\Delta t, x) & =f_{0}^{\star}(t, x) \\
f_{1}(t+\Delta t, x) & =f_{1}^{\star}(t, x-\Delta x) \\
f_{2}(t+\Delta t, x) & =f_{2}^{\star}(t, x+\Delta x)
\end{aligned}
$$

- f2m:

$$
\begin{aligned}
& m_{0}(t+\Delta t, x)=f_{0}(t+\Delta t, x)+f_{1}(t+\Delta t, x)+f_{2}(t+\Delta t, x), \\
& m_{1}(t+\Delta t, x)=f_{1}(t+\Delta t, x)-f_{2}(t+\Delta t, x), \\
& m_{2}(t+\Delta t, x)=\frac{1}{2} f_{1}(t+\Delta t, x)+\frac{1}{2} f_{2}(t+\Delta t, x) .
\end{aligned}
$$

The moment of order $0, m_{0}$, being conserved during the relaxation phase, a diffusive scaling $\Delta t=\Delta x^{2}$, yields to the following equivalent equation

$$
\partial_{t} m_{0}=2\left(\frac{1}{s_{1}}-\frac{1}{2}\right) \partial_{x x} m_{2}^{e}+\mathcal{O}\left(\Delta x^{2}\right),
$$

if $m_{1}^{e}=0$. In order to be consistent with the heat equation, the following choice is done:

$$
m_{2}^{e}=\frac{1}{2} u, \quad s_{1}=\frac{2}{1+2 \mu}, \quad s_{2}=1 .
$$

Using pyLBM

pyLBM uses Python dictionary to describe the simulation. In the following, we will build this dictionary step by step.

The geometry

In pyLBM, the geometry is defined by a box and a label for the boundaries.

```
Geometry informations
    spatial dimension: 1
    bounds of the box:
[[ 0. 1.]]
```

Geometry

The stencil

pyLBM provides a class stencil that is used to define the discret velocities of the scheme. In this example, the stencil is composed by the velocities $v_{0}=0, v_{1}=1$ and $v_{2}=-1$ numbered by $[0,1,2]$.

```
Stencil informations
    * spatial dimension: 1
    * maximal velocity in each direction: [1]
    * minimal velocity in each direction: [-1]
    * Informations for each elementary stencil:
            stencil 0
                - number of velocities: 3
            - velocities: (0: 0), (1: 1), (2: -1),
```


The domain

In order to build the domain of the simulation, the dictionary should contain the space step Δx and the stencils of the velocities (one for each scheme).

We construct a domain with $N=10$ points in space.

```
Domain informations
    spatial dimension: 1
    space step: dx= 1.000e-01
```


Domain

The scheme

In pyLBM, a simulation can be performed by using several coupled schemes. In this example, a single scheme is used and defined through a list of one single dictionary. This dictionary should contain:

- 'velocities': a list of the velocities
- 'conserved_moments': a list of the conserved moments as sympy variables
- 'polynomials': a list of the polynomials that define the moments
- 'equilibrium': a list of the equilibrium value of all the moments
- 'relaxation_parameters': a list of the relaxation parameters (0 for the conserved moments)
- 'init': a dictionary to initialize the conserved moments
(see the documentation for more details)
The scheme velocity could be taken to $1 / \Delta x$ and the inital value of u to

$$
u(t=0, x)=\sin (\pi x)
$$

```
[0] WARNING pyLBM.scheme in function __init__ line 229
The value 'space_step' is not given or wrong.
The scheme takes default value: dx = 1.
WARNING:pyLBM.scheme:The value 'space_step' is not given or wrong.
The scheme takes default value: dx = 1.
```

```
Scheme informations
    spatial dimension: dim=1
    number of schemes: nscheme=1
    number of velocities:
```

```
    Stencil.nv[0]=3
    velocities value:
    v[0]=(0: 0), (1: 1), (2: -1),
    polynomials:
    P[0]=Matrix([[1], [X], [X**2/2]])
    equilibria:
    EQ[0]=Matrix([[u], [0.0], [0.5*u]])
    relaxation parameters:
    s[0]=[0.0, 0.6666666666666666, 1.0]
    moments matrices
M = [Matrix([
[1, 1, 1],
[0, 1, -1],
[0, 1/2, 1/2]])]
invM = [Matrix([
[1, 0, -2],
[0, 1/2, 1],
[0, -1/2, 1]])]
```


The simulation

A simulation is built by defining a correct dictionary.
We combine the previous dictionaries to build a simulation. In order to impose the homogeneous Dirichlet conditions in $x=0$ and $x=1$, the dictionary should contain the key 'boundary_conditions' (we use pyLBM.bc.Anti_bounce_back function).

```
Simulation informations:
Domain informations
    spatial dimension: 1
    space step: dx=1.000e-01
Scheme informations
    spatial dimension: dim=1
    number of schemes: nscheme=1
    number of velocities:
    Stencil.nv[0]=3
    velocities value:
    v[0]=(0: 0), (1: 1), (2: -1),
    polynomials:
    P[0]=Matrix([[1], [X], [X**2/2]])
    equilibria:
    EQ[0]=Matrix([[u], [0.0], [0.5*u]])
        relaxation parameters:
    s[0]=[0.0, 0.6666666666666666, 1.0]
        moments matrices
M = [Matrix([
[1, 1, 1],
[0, 1, -1],
[0, 1/2, 1/2]])]
invM = [Matrix([
[1, 0, -2],
[0, 1/2, 1],
[0, -1/2, 1]])]
```


Run a simulation

Once the simulation is initialized, one time step can be performed by using the function one_time_step.
We compute the solution of the heat equation at $t=0.1$. And, on the same graphic, we plot the initial condition, the exact solution and the numerical solution.

The heat equation in 2D

In this tutorial, we test a very classical lattice Boltzmann scheme $D_{2} Q_{5}$ on the heat equation.
The problem reads

$$
\begin{gathered}
\partial_{t} u=\mu\left(\partial_{x x}+\partial_{y y}\right) u, \quad t>0, \quad(x, y) \in(0,1)^{2} \\
u(0)=u(1)=0
\end{gathered}
$$

where μ is a constant scalar.

The scheme $\mathrm{D}_{2} \mathrm{Q}_{5}$
The numerical simulation of this equation by a lattice Boltzmann scheme consists in the approximatation of the solution on discret points of $(0,1)^{2}$ at discret instants.
To simulate this system of equations, we use the $\mathrm{D}_{2} \mathrm{Q}_{5}$ scheme given by

- five velocities $v_{0}=(0,0), v_{1}=(1,0), v_{2}=(0,1), v_{3}=(-1,0)$, and $v_{4}=(0,-1)$ with associated distribution functions $f_{i}, 0 \leq i \leq 4$,
- a space step Δx and a time step Δt, the ration $\lambda=\Delta x / \Delta t$ is called the scheme velocity,
- five moments

$$
m_{0}=\sum_{i=0}^{4} f_{i}, \quad m_{1}=\sum_{i=0}^{4} v_{i x} f_{i}, \quad m_{2}=\sum_{i=0}^{4} v_{i y} f_{i}, \quad m_{3}=\frac{1}{2} \sum_{i=0}^{5}\left(v_{i x}^{2}+v_{i y}^{2}\right) f_{i}, \quad m_{4}=\frac{1}{2} \sum_{i=0}^{5}\left(v_{i x}^{2}-v_{i y}^{2}\right) f_{i}
$$

and their equilibrium values $m_{k}^{e}, 0 \leq k \leq 4$. * two relaxation parameters s_{1} and s_{2} lying in $[0,2]$ (s_{1} for the odd moments and s_{2} for the odd ones).

In order to use the formalism of the package pyLBM, we introduce the five polynomials that define the moments: $P_{0}=1, P_{1}=X, P_{2}=Y, P_{3}=\left(X^{2}+Y^{2}\right) / 2$, and $P_{4}=\left(X^{2}-Y^{2}\right) / 2$, such that

$$
m_{k}=\sum_{i=0}^{4} P_{k}\left(v_{i x}, v_{i y}\right) f_{i}
$$

The transformation $\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right) \mapsto\left(m_{0}, m_{1}, m_{2}, m_{3}, m_{4}\right)$ is invertible if, and only if, the polynomials $\left(P_{0}, P_{1}, P_{2}, P_{3}, P_{4}\right)$ is a free set over the stencil of velocities.

The lattice Boltzmann method consists to compute the distribution functions $f_{i}, 0 \leq i \leq 4$ in each point of the lattice x and at each time $t^{n}=n \Delta t$. A step of the scheme can be read as a splitting between the relaxation phase and the transport phase:

- relaxation:

$$
\begin{aligned}
& m_{1}^{\star}(t, x, y)=\left(1-s_{1}\right) m_{1}(t, x, y)+s_{1} m_{1}^{e}(t, x, y) \\
& m_{2}^{\star}(t, x, y)=\left(1-s_{1}\right) m_{2}(t, x, y)+s_{1} m_{2}^{e}(t, x, y) \\
& m_{3}^{\star}(t, x, y)=\left(1-s_{2}\right) m_{3}(t, x, y)+s_{2} m_{3}^{e}(t, x, y) \\
& m_{4}^{\star}(t, x, y)=\left(1-s_{2}\right) m_{4}(t, x, y)+s_{2} m_{4}^{e}(t, x, y) .
\end{aligned}
$$

- m2f:

$$
\begin{aligned}
f_{0}^{\star}(t, x, y) & =m_{0}(t, x, y)-2 m_{3}^{\star}(t, x, y), \\
f_{1}^{\star}(t, x, y) & =\frac{1}{2}\left(m_{1}^{\star}(t, x, y)+m_{3}^{\star}(t, x, y)+m_{4}^{\star}(t, x, y)\right), \\
f_{2}^{\star}(t, x, y) & =\frac{1}{2}\left(m_{2}^{\star}(t, x, y)+m_{3}^{\star}(t, x, y)-m_{4}^{\star}(t, x, y)\right), \\
f_{3}^{\star}(t, x, y) & =\frac{1}{2}\left(-m_{1}^{\star}(t, x, y)+m_{3}^{\star}(t, x, y)+m_{4}^{\star}(t, x, y)\right), \\
f_{4}^{\star}(t, x, y) & =\frac{1}{2}\left(-m_{2}^{\star}(t, x, y)+m_{3}^{\star}(t, x, y)-m_{4}^{\star}(t, x, y)\right) .
\end{aligned}
$$

- transport:

$$
\begin{aligned}
f_{0}(t+\Delta t, x, y) & =f_{0}^{\star}(t, x, y) \\
f_{1}(t+\Delta t, x, y) & =f_{1}^{\star}(t, x-\Delta x, y) \\
f_{2}(t+\Delta t, x, y) & =f_{2}^{\star}(t, x, y-\Delta x) \\
f_{3}(t+\Delta t, x, y) & =f_{3}^{\star}(t, x+\Delta x, y) \\
f_{4}(t+\Delta t, x, y) & =f_{4}^{\star}(t, x, y+\Delta x) .
\end{aligned}
$$

- f 2 m :

$$
\begin{aligned}
m_{0}(t+\Delta t, x, y)= & f_{0}(t+\Delta t, x, y)+f_{1}(t+\Delta t, x, y)+f_{2}(t+\Delta t, x, y) \\
& +f_{3}(t+\Delta t, x, y)+f_{4}(t+\Delta t, x, y) \\
m_{1}(t+\Delta t, x, y)= & f_{1}(t+\Delta t, x, y)-f_{3}(t+\Delta t, x, y) \\
m_{2}(t+\Delta t, x, y)= & f_{2}(t+\Delta t, x, y)-f_{4}(t+\Delta t, x, y) \\
m_{3}(t+\Delta t, x, y)= & \frac{1}{2}\left(f_{1}(t+\Delta t, x, y)+f_{2}(t+\Delta t, x, y)+f_{3}(t+\Delta t, x, y)+f_{4}(t+\Delta t, x, y)\right) \\
m_{4}(t+\Delta t, x, y)= & \frac{1}{2}\left(f_{1}(t+\Delta t, x, y)-f_{2}(t+\Delta t, x, y)+f_{3}(t+\Delta t, x, y)-f_{4}(t+\Delta t, x, y)\right)
\end{aligned}
$$

The moment of order $0, m_{0}$, being conserved during the relaxation phase, a diffusive scaling $\Delta t=\Delta x^{2}$, yields to the following equivalent equation

$$
\partial_{t} m_{0}=\left(\frac{1}{s_{1}}-\frac{1}{2}\right)\left(\partial_{x x}\left(m_{3}^{e}+m_{4}^{e}\right)+\partial_{y y}\left(m_{3}^{e}-m_{4}^{e}\right)\right)+\mathcal{O}\left(\Delta x^{2}\right)
$$

if $m_{1}^{e}=0$. In order to be consistent with the heat equation, the following choice is done:

$$
m_{3}^{e}=\frac{1}{2} u, \quad m_{4}^{e}=0, \quad s_{1}=\frac{2}{1+4 \mu}, \quad s_{2}=1
$$

Using pyLBM

pyLBM uses Python dictionary to describe the simulation. In the following, we will build this dictionary step by step.

The geometry

In pyLBM, the geometry is defined by a box and a label for the boundaries. We define here a square $(0,1)^{2}$.

```
Geometry informations
    spatial dimension: 2
    bounds of the box:
[[ 0. 1.]
[ 0. 1.]]
```


The stencil

pyLBM provides a class stencil that is used to define the discret velocities of the scheme. In this example, the stencil is composed by the velocities $v_{0}=(0,0), v_{1}=(1,0), v_{2}=(-1,0), v_{3}=(0,1)$, and $v_{4}=(0,-1)$ numbered by [$0,1,2,3,4]$.

```
Stencil informations
    * spatial dimension: 2
    * maximal velocity in each direction: [1 1]
    * minimal velocity in each direction: [-1 -1]
    * Informations for each elementary stencil:
            stencil 0
            - number of velocities: 5
            - velocities: (0: 0, 0), (1: 1, 0), (2: 0, 1), (3: -1, 0), (4: 0, -1),
```


Stencil 0

The domain

In order to build the domain of the simulation, the dictionary should contain the space step Δx and the stencils of the velocities (one for each scheme).

We construct a domain with $N=10$ points in space.

```
Domain informations
    spatial dimension: 2
    space step: dx=1.000e-01
```

Domain

The scheme

In pyLBM, a simulation can be performed by using several coupled schemes. In this example, a single scheme is used and defined through a list of one single dictionary. This dictionary should contain:

- 'velocities': a list of the velocities
- 'conserved_moments': a list of the conserved moments as sympy variables
- 'polynomials': a list of the polynomials that define the moments
- 'equilibrium': a list of the equilibrium value of all the moments
- 'relaxation_parameters': a list of the relaxation parameters (0 for the conserved moments)
- 'init': a dictionary to initialize the conserved moments
(see the documentation for more details)
The scheme velocity could be taken to $1 / \Delta x$ and the inital value of u to

$$
u(t=0, x)=\sin (\pi x) \sin (\pi y)
$$

```
[0] WARNING pyLBM.scheme in function __init__ line 229
The value 'space_step' is not given or wrong.
The scheme takes default value: dx = 1.
WARNING:pyLBM.scheme:The value 'space_step' is not given or wrong.
The scheme takes default value: dx = 1.
```

```
Scheme informations
    spatial dimension: dim=2
    number of schemes: nscheme=1
    number of velocities:
```

```
    Stencil.nv[0]=5
    velocities value:
    v[0]=(0: 0, 0), (1: 1, 0), (2: 0, 1), (3: -1, 0), (4: 0, -1),
    polynomials:
    P[0]=Matrix([[1], [X], [Y], [X**2/2 + Y**2/2], [X**2/2 - Y**2/2]])
    equilibria:
    EQ[0]=Matrix([[u], [0.0], [0.0], [0.5*u], [0.0]])
    relaxation parameters:
    s[0]=[0.0, 0.4, 0.4, 1.0, 1.0]
    moments matrices
M = [Matrix([
[1, 1, 1, 1, 1],
[0, 1, 0, -1, 0],
[0, 0, 1, 0, -1],
[0, 1/2, 1/2, 1/2, 1/2],
[0, 1/2, -1/2, 1/2, -1/2]])]
invM = [Matrix([
[1, 0, 0, -2, 0],
[0, 1/2, 0, 1/2, 1/2],
[0, 0, 1/2, 1/2, -1/2],
[0, -1/2, 0, 1/2, 1/2],
[0, 0, -1/2, 1/2, -1/2]])]
```


The simulation

A simulation is built by defining a correct dictionary.
We combine the previous dictionaries to build a simulation. In order to impose the homogeneous Dirichlet conditions in $x=0, x=1, y=0$, and $y=1$, the dictionary should contain the key 'boundary_conditions' (we use pyLBM.bc.Anti_bounce_back function).

```
Simulation informations:
Domain informations
    spatial dimension: 2
    space step: dx=1.000e-01
Scheme informations
    spatial dimension: dim=2
    number of schemes: nscheme=1
    number of velocities:
    Stencil.nv[0]=5
    velocities value:
    v[0]=(0: 0, 0), (1: 1, 0), (2: 0, 1), (3: -1, 0), (4: 0, -1),
    polynomials:
    P[0]=Matrix([[1], [X], [Y], [X**2/2 + Y**2/2], [X**2/2 - Y**2/2]])
    equilibria:
    EQ[0]=Matrix([[u], [0.0], [0.0], [0.5*u], [0.0]])
        relaxation parameters:
    s[0]=[0.0, 0.4, 0.4, 1.0, 1.0]
        moments matrices
M = [Matrix([
[1, 1, 1, 1, 1],
[0, 1, 0, -1, 0],
[0, 0, 1, 0, -1],
[0, 1/2, 1/2, 1/2, 1/2],
[0, 1/2, -1/2, 1/2, -1/2]])]
invM = [Matrix([
```

```
[1, 0, 0, -2, 0],
[0, 1/2, 0, 1/2, 1/2],
[0, 0, 1/2, 1/2, -1/2],
[0, -1/2, 0, 1/2, 1/2],
[0, 0, -1/2, 1/2, -1/2]])]
```


Run a simulation

Once the simulation is initialized, one time step can be performed by using the function one_time_step.
We compute the solution of the heat equation at $t=0.1$. On the same graphic, we plot the initial condition, the exact solution and the numerical solution.

Poiseuille flow

In this tutorial, we consider the classical $\mathrm{D}_{2} \mathrm{Q}_{9}$ to simulate a Poiseuille flow modeling by the Navier-Stokes equations.

The $\mathrm{D}_{2} \mathrm{Q}_{9}$ for Navier-Stokes

The $\mathrm{D}_{2} \mathrm{Q}_{9}$ is defined by:

- a space step Δx and a time step Δt related to the scheme velocity λ by the relation $\lambda=\Delta x / \Delta t$,
- nine velocities $\{(0,0),(\pm 1,0),(0, \pm 1),(\pm 1, \pm 1)\}$, identified in pyLBM by the numbers 0 to 8 ,
- nine polynomials used to build the moments

$$
\left\{1, \lambda X, \lambda Y, 3 E-4,\left(9 E^{2}-21 E+8\right) / 2,3 X E-5 X, 3 Y E-5 Y, X^{2}-Y^{2}, X Y\right\},
$$

where $E=X^{2}+Y^{2}$.

- three conserved moments ρ, q_{x}, and q_{y},
- nine relaxation parameters (three are 0 corresponding to conserved moments): $\left\{0,0,0, s_{\mu}, s_{\mu}, s_{\eta}, s_{\eta}, s_{\eta}, s_{\eta}\right\}$, where s_{μ} and s_{η} are in $(0,2)$,
- equilibrium value of the non conserved moments

$$
\begin{aligned}
& m_{3}^{e}=-2 \rho+3\left(q_{x}^{2}+q_{y}^{2}\right) /\left(\rho_{0} \lambda^{2}\right) \\
& m_{4}^{e}=\rho-3\left(q_{x}^{2}+q_{y}^{2}\right) /\left(\rho_{0} \lambda^{2}\right) \\
& m_{5}^{e}=-q_{x} / \lambda \\
& m_{6}^{e}=-q_{y} / \lambda \\
& m_{7}^{e}=\left(q_{x}^{2}-q_{y}^{2}\right) /\left(\rho_{0} \lambda^{2}\right) \\
& m_{8}^{e}=q_{x} q_{y} /\left(\rho_{0} \lambda^{2}\right)
\end{aligned}
$$

where ρ_{0} is a given scalar.
This scheme is consistant at second order with the following equations (taken $\rho_{0}=1$) \begin\{gathered\} } :raw-latex:‘ddrondt':raw-latex:‘ไrho ${ }^{`}+$:raw-latex:'drondx $q_{-} x+$:raw-latex:drondy $q_{-} y=0, \backslash$:raw-latex:drondt $q_{-} x+$:raw-latex:drondx $\left(q_{-} x^{\wedge} 2+p\right)+$:raw-latex:drondy $\left(q_{-} x q_{-} y\right)=$:raw-latex:mu :raw-latex:drondx (:rawlatex:drondx $q_{-} x+$ raw-latex:drondy $\left.q_{-} y\right)+$:raw-latex:eta (:raw-latex:drondxx‘+:raw-latex:drondyy)q_x, \} :raw-latex: ${ }^{〔}$ ddrondt ${ }^{‘} q \backslash y+$:raw-latex: ${ }^{\prime}$ drondx $\left(q_{-} x q_{-} y\right)+$:raw-latex:drondy $\left(q_{-} y^{\wedge} 2+p\right)=$:raw-latex:mu :rawlatex:drondy (:raw-latex:drondx $q_{-} x+$:raw-latex:drondy $\left.q_{-} y\right)+$:raw-latex:eta (:raw-latex:drondxx‘+:rawlatex:drondyy)q_y, lend\{gathered\} with $p=\rho \lambda^{2} / 3$.

Build the simulation with pyLBM

In the following, we build the dictionary of the simulation step by step.

The geometry

The simulation is done on a rectangle of length L and width W. We can use $L=W=1$.
We propose a dictionary that build the geometry of the domain. The labels of the bounds can be specified to different values for the moment.

```
Geometry informations
    spatial dimension: 2
    bounds of the box:
[[ [ 0. 1. ]
[-0.5 0.5]]
```


The stencil

The stencil of the $\mathrm{D}_{2} \mathrm{Q}_{9}$ is composed by the nine following velocities in 2D:

$$
\begin{gathered}
v_{0}=(0,0) \\
v_{1}=(1,0), \quad v_{2}=(0,1), \quad v_{3}=(-1,0), \quad v_{4}=(0,-1) \\
v_{5}=(1,1), \quad v_{6}=(-1,1), \quad v_{7}=(-1,-1), \quad v_{8}=(1,-1)
\end{gathered}
$$

```
Stencil informations
    * spatial dimension: 2
    * maximal velocity in each direction: [1 1]
    * minimal velocity in each direction: [-1 -1]
    * Informations for each elementary stencil:
        stencil 0
            - number of velocities: 9
    - velocities: (0: 0, 0), (1: 1, 0), (2: 0, 1), (3: -1, 0), (4: 0, -1), -
\hookrightarrow(5: 1, 1), (6: -1, 1), (7: -1, -1), (8: 1, -1),
```


The domain
In order to build the domain of the simulation, the dictionary should contain the space step Δx and the stencils of the velocities (one for each scheme).

```
Domain informations
    spatial dimension: 2
    space step: dx=1.000e-01
```


The scheme

In pyLBM, a simulation can be performed by using several coupled schemes. In this example, a single scheme is used and defined through a list of one single dictionary. This dictionary should contain:

- 'velocities': a list of the velocities
- 'conserved_moments': a list of the conserved moments as sympy variables
- 'polynomials': a list of the polynomials that define the moments
- 'equilibrium': a list of the equilibrium value of all the moments
- 'relaxation_parameters': a list of the relaxation parameters (0 for the conserved moments)
- 'init': a dictionary to initialize the conserved moments
(see the documentation for more details)
In order to fix the bulk (μ) and the shear (η) viscosities, we impose

$$
s_{\eta}=\frac{2}{1+\eta d}, \quad s_{\mu}=\frac{2}{1+\mu d}, \quad d=\frac{6}{\lambda \rho_{0} \Delta x} .
$$

The scheme velocity could be taken to 1 and the inital value of ρ to $\rho_{0}=1, q_{x}$ and q_{y} to 0 .
In order to accelerate the simulation, we can use another generator. The default generator is Numpy (pure python). We can use for instance Cython that generates a more efficient code. This generator can be activated by using 'generator': pyLBM.generator.CythonGenerator in the dictionary.

```
Scheme informations
    spatial dimension: dim=2
    number of schemes: nscheme=1
    number of velocities:
    Stencil.nv[0]=9
```

```
        velocities value:
    v[0]=(0: 0, 0), (1: 1, 0), (2: 0, 1), (3: -1, 0), (4: 0, -1), (5: 1, 1), (6: -1, 
\hookrightarrow1), (7: -1, -1), (8: 1, -1),
        polynomials:
    P[0]=Matrix([[1], [LA*X], [LA*Y], [3*X**2 + 3*Y**2 - 4], [-21*X**2/2 - 21*Y**2/2_
\hookrightarrow+9*(X**2 + Y**2)**2/2 + 4], [3*X*(X**2 + Y**2) - 5*X], [3*Y*(X**2 + Y**2) - 5*Y], b
\hookrightarrow[X**2 - Y**2], [X*Y]])
        equilibria:
    EQ[0]=Matrix([[rho], [qx], [qy], [-2*rho + 3.0*qx**2/LA**2 + 3.0*qy**2/LA**2], -
\hookrightarrow[rho - 3.0*qx**2/LA**2 - 3.0*qy**2/LA**2], [-qx/LA], [-qy/LA], [1.0*qx**2/LA**2 - 1.
\hookrightarrow0*qy**2/LA**2], [1.0*qx*qy/LA**2]])
    relaxation parameters:
    s[0]=[0.0, 0.0, 0.0, 1.1312217194570136, 1.1312217194570136, 0.025706940874035987,
\hookrightarrow0.025706940874035987,0.025706940874035987,0.025706940874035987]
    moments matrices
M = [Matrix([
[ 1, 1, 1, 1, 1, 1, 1, 1, 1],
[ 0, LA, 0, -LA, 0, LA, -LA, -LA, LA],
[ 0, 0, LA, 0, -LA, LA, LA, -LA, -LA],
[-4, -1, -1, -1, -1, 2, 2, 2, 2],
[4,-2,-2, -2, -2, 1, 1, 1, 1],
[ 0, -2, 0, 2, 0, 1, -1, -1, 1],
[ 0, 0, -2, 0, 2, 1, 1, -1, -1],
[ 0, 1, -1, 1, -1, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 1, -1, 1, -1]])]
invM = [Matrix([
[1/9, 0, 0, -1/9, 1/9, 0, 0, 0, 0,
[1/9, 1/(6*LA), 0, -1/36, -1/18, -1/6, 0, 1/4, 0],
[1/9, 0, 1/(6*LA), -1/36, -1/18, 0, -1/6, -1/4, 0],
[1/9, -1/(6*LA), 0, -1/36, -1/18, 1/6, 0, 1/4, 0],
[1/9, 0, -1/(6*LA), -1/36, -1/18, 0, 1/6, -1/4, 0],
[1/9, 1/(6*LA), 1/(6*LA), 1/18, 1/36, 1/12, 1/12, 0, 1/4],
[1/9, -1/(6*LA), 1/(6*LA), 1/18, 1/36, -1/12, 1/12, 0, -1/4],
[1/9, -1/(6*LA), -1/(6*LA), 1/18, 1/36, -1/12, -1/12, 0, 1/4],
[1/9, 1/(6*LA), -1/(6*LA), 1/18, 1/36, 1/12, -1/12, 0, -1/4]])]
```


Run the simulation

For the simulation, we take

- The domain $x \in(0, L)$ and $y \in(-W / 2, W / 2), L=2, W=1$,
- the viscosities $\mu=10^{-2}=\eta=10^{-2}$,
- the space step $\Delta x=1 / 128$, the scheme velocity $\lambda=1$,
- the mean density $\rho_{0}=1$.

Concerning the boundary conditions, we impose the velocity on all the edges by a bounce-back condition with a source term that reads

$$
\begin{array}{r}
q_{x}(x, y)=\rho_{0} v_{\max }\left(1-\frac{4 y^{2}}{W^{2}}\right), \quad q_{y}(x, y)=0 \\
\text { with }: \text { math }:{ }^{\prime} v_{\max }=0.1^{\prime}
\end{array}
$$

We compute the solution for $t \in(0,50)$ and we plot several slices of the solution during the simulation.

This problem has an exact solution given by

$$
\begin{gathered}
q_{x}=\rho_{0} v_{\max }\left(1-\frac{4 y^{2}}{W^{2}}\right), \quad q_{y}=0, \quad p=p_{0}+K x, \\
\text { wherethepressuregradient : math : ' } K^{‘} \text { reads } \\
K=-\frac{8 v_{\max } \eta}{W^{2}} .
\end{gathered}
$$

We compute the exact and the numerical gradients of the pressure.

```
Exact pressure gradient : -8.000e-03
Numerical pressure gradient: -7.074e-03
```


Lid driven cavity

In this tutorial, we consider the classical $\mathrm{D}_{2} \mathrm{Q}_{9}$ and $\mathrm{D}_{3} \mathrm{Q}_{15}$ to simulate a lid driven acvity modeling by the NavierStokes equations. The $\mathrm{D}_{2} \mathrm{Q}_{9}$ is used in dimension 2 and the $\mathrm{D}_{3} \mathrm{Q}_{15}$ in dimension 3.

The $\mathrm{D}_{2} \mathrm{Q}_{9}$ for Navier-Stokes

The $\mathrm{D}_{2} \mathrm{Q}_{9}$ is defined by:

- a space step Δx and a time step Δt related to the scheme velocity λ by the relation $\lambda=\Delta x / \Delta t$,
- nine velocities $\{(0,0),(\pm 1,0),(0, \pm 1),(\pm 1, \pm 1)\}$, identified in pyLBM by the numbers 0 to 8 ,
- nine polynomials used to build the moments

$$
\left\{1, \lambda X, \lambda Y, 3 E-4,\left(9 E^{2}-21 E+8\right) / 2,3 X E-5 X, 3 Y E-5 Y, X^{2}-Y^{2}, X Y\right\}
$$

where $E=X^{2}+Y^{2}$.

- three conserved moments ρ, q_{x}, and q_{y},
- nine relaxation parameters (three are 0 corresponding to conserved moments): $\left\{0,0,0, s_{\mu}, s_{\mu}, s_{\eta}, s_{\eta}, s_{\eta}, s_{\eta}\right\}$, where s_{μ} and s_{η} are in $(0,2)$,
- equilibrium value of the non conserved moments

$$
\begin{aligned}
& m_{3}^{e}=-2 \rho+3\left(q_{x}^{2}+q_{y}^{2}\right) /\left(\rho_{0} \lambda^{2}\right) \\
& m_{4}^{e}=\rho-3\left(q_{x}^{2}+q_{y}^{2}\right) /\left(\rho_{0} \lambda^{2}\right) \\
& m_{5}^{e}=-q_{x} / \lambda \\
& m_{6}^{e}=-q_{y} / \lambda \\
& m_{7}^{e}=\left(q_{x}^{2}-q_{y}^{2}\right) /\left(\rho_{0} \lambda^{2}\right) \\
& m_{8}^{e}=q_{x} q_{y} /\left(\rho_{0} \lambda^{2}\right)
\end{aligned}
$$

where ρ_{0} is a given scalar.
This scheme is consistant at second order with the following equations (taken $\rho_{0}=1$)

$$
\begin{gathered}
\partial_{t} \rho+\partial_{x} q_{x}+\partial_{y} q_{y}=0 \\
\partial_{t} q_{x}+\partial_{x}\left(q_{x}^{2}+p\right)+\partial_{y}\left(q_{x} q_{y}\right)=\mu \partial_{x}\left(\partial_{x} q_{x}+\partial_{y} q_{y}\right)+\eta\left(\partial_{x x}+\partial_{y y}\right) q_{x} \\
\partial_{t} q_{y}+\partial_{x}\left(q_{x} q_{y}\right)+\partial_{y}\left(q_{y}^{2}+p\right)=\mu \partial_{y}\left(\partial_{x} q_{x}+\partial_{y} q_{y}\right)+\eta\left(\partial_{x x}+\partial_{y y}\right) q_{y}
\end{gathered}
$$

with $p=\rho \lambda^{2} / 3$.
We write the dictionary for a simulation of the Navier-Stokes equations on $(0,1)^{2}$.
In order to impose the boundary conditions, we use the bounce-back conditions to fix $q_{x}=q_{y}=0$ at south, east, and west and $q_{x}=\rho u, q_{y}=0$ at north. The driven velocity u could be $u=\lambda / 10$.
The solution is governed by the Reynolds number $R e=\rho_{0} u / \eta$. We fix the relaxation parameters to have $R e=1000$. The relaxation parameters related to the bulk viscosity μ should be large enough to ensure the stability (for instance $\mu=10^{-3}$).

We compute the stationary solution of the problem obtained for large enough final time. We plot the solution with the function quiver of matplotlib.

```
Reynolds number: 1.000e+03
Bulk viscosity : 1.000e-04
Shear viscosity: 2.000e-04
relaxation parameters: [0.0, 0.0, 0.0, 1.8573551263001487, 1.8573551263001487, 1.
4737031900138697, 1.7337031900138697, 1.7337031900138697, 1.7337031900138697]
```


The $\mathrm{D}_{3} \mathrm{Q}_{15}$ for Navier-Stokes
The $\mathrm{D}_{3} \mathrm{Q}_{15}$ is defined by:

- a space step Δx and a time step Δt related to the scheme velocity λ by the relation $\lambda=\Delta x / \Delta t$,
- fifteen velocities $\{(0,0,0),(\pm 1,0,0),(0, \pm 1,0),(0,0, \pm 1),(\pm 1, \pm 1, \pm 1)\}$, identified in pyLBM by the numbers $\{0, \ldots, 6,19, \ldots, 26\}$,
- fifteen polynomials used to build the moments
$\left\{1, E-2,\left(15 E^{2}-55 E+32\right) / 2, X, X(5 E-13) / 2, Y, Y(5 E-13) / 2, Z, Z(5 E-13) / 2,3 X^{2}-E, Y^{2}-Z^{2}, X Y, Y Z, Z X, X Y Z\right.$
where $E=X^{2}+Y^{2}+Z^{2}$.
- four conserved moments ρ, q_{x}, q_{y}, and q_{z},
- fifteen relaxation parameters (four are 0 corresponding to conserved moments): $\left\{0, s_{1}, s_{2}, 0, s_{4}, 0, s_{4}, 0, s_{4}, s_{9}, s_{9}, s_{11}, s_{11}, s_{11}, s_{14}\right\}$,
- equilibrium value of the non conserved moments

$$
\begin{aligned}
m_{1}^{e} & =-\rho+q_{x}^{2}+q_{y}^{2}+q_{z}^{2}, \\
m_{2}^{e} & =-\rho, \\
m_{4}^{e} & =-7 q_{x} / 3, \\
m_{6}^{e} & =-7 q_{y} / 3, \\
m_{8}^{e} & =-7 q_{z} / 3, \\
m_{9}^{e} & =\left(2 q_{x}^{2}-\left(q_{y}^{2}+q_{z}^{2}\right)\right) / 3, \\
m_{10}^{e} & =q_{y}^{2}-q_{z}^{2}, \\
m_{11}^{e} & =q_{x} q_{y}, \\
m_{12}^{e} & =q_{y} q_{z}, \\
m_{13}^{e} & =q_{z} q_{x}, \\
m_{14}^{e} & =0 .
\end{aligned}
$$

This scheme is consistant at second order with the Navier-Stokes equations with the shear viscosity η and the relaxation parameter s_{9} linked by the relation

$$
s_{9}=\frac{2}{1+6 \eta / \Delta x} .
$$

We write a dictionary for a simulation of the Navier-Stokes equations on $(0,1)^{3}$.
In order to impose the boundary conditions, we use the bounce-back conditions to fix $q_{x}=q_{y}=q_{z}=0$ at south, north, east, west, and bottom and $q_{x}=\rho u, q_{y}=q_{z}=0$ at top. The driven velocity u could be $u=\lambda / 10$.

We compute the stationary solution of the problem obtained for large enough final time. We plot the solution with the function quiver of matplotlib.

Reynolds number: $2.000 e+03$
Shear viscosity: $5.000 \mathrm{e}-05$

Von Karman vortex street

In this tutorial, we consider the classical $\mathrm{D}_{2} \mathrm{Q}_{9}$ to simulate the Von Karman vortex street modeling by the NavierStokes equations.

In fluid dynamics, a Von Karman vortex street is a repeating pattern of swirling vortices caused by the unsteady separation of flow of a fluid around blunt bodies. It is named after the engineer and fluid dynamicist Theodore von Karman. For the simulation, we propose to simulate the Navier-Stokes equation into a rectangular domain with a circular hole of diameter d.

The $\mathrm{D}_{2} \mathrm{Q}_{9}$ is defined by:

- a space step Δx and a time step Δt related to the scheme velocity λ by the relation $\lambda=\Delta x / \Delta t$,
- nine velocities $\{(0,0),(\pm 1,0),(0, \pm 1),(\pm 1, \pm 1)\}$, identified in pyLBM by the numbers 0 to 8 ,
- nine polynomials used to build the moments

$$
\left\{1, \lambda X, \lambda Y, 3 E-4,\left(9 E^{2}-21 E+8\right) / 2,3 X E-5 X, 3 Y E-5 Y, X^{2}-Y^{2}, X Y\right\}
$$

where $E=X^{2}+Y^{2}$.

- three conserved moments ρ, q_{x}, and q_{y},
- nine relaxation parameters (three are 0 corresponding to conserved moments): $\left\{0,0,0, s_{\mu}, s_{\mu}, s_{\eta}, s_{\eta}, s_{\eta}, s_{\eta}\right\}$, where s_{μ} and s_{η} are in $(0,2)$,
- equilibrium value of the non conserved moments

$$
\begin{aligned}
& m_{3}^{e}=-2 \rho+3\left(q_{x}^{2}+q_{y}^{2}\right) /\left(\rho_{0} \lambda^{2}\right), \\
& m_{4}^{e}=\rho-3\left(q_{x}^{2}+q_{y}^{2}\right) /\left(\rho_{0} \lambda^{2}\right), \\
& m_{5}^{e}=-q_{x} / \lambda, \\
& m_{6}^{e}=-q_{y} / \lambda, \\
& m_{7}^{e}=\left(q_{x}^{2}-q_{y}^{2}\right) /\left(\rho_{0} \lambda^{2}\right), \\
& m_{8}^{e}=q_{x} q_{y} /\left(\rho_{0} \lambda^{2}\right),
\end{aligned}
$$

where ρ_{0} is a given scalar.
This scheme is consistant at second order with the following equations (taken $\rho_{0}=1$)

$$
\begin{gathered}
\partial_{t} \rho+\partial_{x} q_{x}+\partial_{y} q_{y}=0 \\
\partial_{t} q_{x}+\partial_{x}\left(q_{x}^{2}+p\right)+\partial_{y}\left(q_{x} q_{y}\right)=\mu \partial_{x}\left(\partial_{x} q_{x}+\partial_{y} q_{y}\right)+\eta\left(\partial_{x x}+\partial_{y y}\right) q_{x} \\
\partial_{t} q_{y}+\partial_{x}\left(q_{x} q_{y}\right)+\partial_{y}\left(q_{y}^{2}+p\right)=\mu \partial_{y}\left(\partial_{x} q_{x}+\partial_{y} q_{y}\right)+\eta\left(\partial_{x x}+\partial_{y y}\right) q_{y}
\end{gathered}
$$

with $p=\rho \lambda^{2} / 3$.
We write a dictionary for a simulation of the Navier-Stokes equations on $(0,1)^{2}$.
In order to impose the boundary conditions, we use the bounce-back conditions to fix $q_{x}=q_{y}=\rho v_{0}$ at south, east, and north where the velocity v_{0} could be $v_{0}=\lambda / 20$. At west, we impose the simple output condition of Neumann by repeating the second to last cells into the last cells.

The solution is governed by the Reynolds number $R e=\rho_{0} v_{0} d / \eta$, where d is the diameter of the circle. Fix the relaxation parameters to have $R e=500$. The relaxation parameters related to the bulk viscosity μ should be large enough to ensure the stability (for instance $\mu=10^{-3}$).
We compute the stationary solution of the problem obtained for large enough final time. We plot the vorticity of the solution with the function imshow of matplotlib.

```
Reynolds number: 5.000e+02
Bulk viscosity : 1.000e-03
Shear viscosity: 1.000e-05
relaxation parameters: [0.0, 0.0, 0.0, 1.4450867052023122, 1.4450867052023122, 1.
49923493783869939, 1.9923493783869939, 1.9923493783869939,1.99234937838699391
```


Transport equation with source term

In this tutorial, we propose to add a source term in the advection equation. The problem reads

$$
\partial_{t} u+c \partial_{x} u=S(t, x, u), \quad t>0, \quad x \in(0,1)
$$

where c is a constant scalar (typically $c=1$). Additional boundary and initial conditions will be given in the following. S is the source term that can depend on the time t, the space x and the solution u.

In order to simulate this problem, we use the $\mathrm{D}_{1} \mathrm{Q}_{2}$ scheme and we add an additional key: value in the dictionary for the source term. We deal with two examples.

A friction term

In this example, we takes $S(t, x, u)=-\alpha u$ where α is a positive constant. The dictionary of the simulation then reads:

A source term depending on time and space

If the source term S depends explicitely on the time or on the space, we have to specify the corresponding variables in the dictionary through the key parameters. The time variable is prescribed by the key 'time'. Moreover, sympy functions can be used to define the source term like in the following example. This example is just for testing the feature... no physical meaning in mind!

Transport in $1 D$

In this tutorial, we will show how to implement from scratch a very basic lattice Boltzmann scheme: the $D_{1} Q_{2}$ for the advection equation and for Burger's equation.

```
get the notebook
```

The wave equation in $1 D$
In this tutorial, we will show how to implement from scratch a very basic lattice Boltzmann scheme: the $D_{1} Q_{3}$ for the waves equation.

```
get the notebook
```

The heat equation in $1 D$
In this tutorial, we present the $D_{1} Q_{3}$ to solve the heat equation in 1D by using pyLBM.

```
get the notebook
```

The heat equation in $2 D$
In this tutorial, we present the $D_{2} Q_{5}$ to solve the heat equation in 2D by using pyLBM.

```
get the notebook
```

Poiseuille flow
In this tutorial, we present the $D_{2} Q_{9}$ for Navier-Stokes equation to solve the Poiseuille flow in 2D by using pyLBM.

```
get the notebook
```

Lid driven cavity
In this tutorial, we present the $D_{2} Q_{9}$ for Navier-Stokes equation to solve the lid driven cavity in 2D and the $D 3 Q 15$ in 3D by using pyLBM.

```
get the notebook
```

Von Karman vortex street
In this tutorial, we present the $D_{2} Q_{9}$ for Navier-Stokes equation to solve the Von Karman vortex street in 2D by using pyLBM.
get the notebook
Transport equation with source term
In this tutorial, we will show how to implement with pyLBM the $D_{1} Q_{2}$ for the advection equation with a source term.

CHAPTER 2

Documentation of the code

The most important classes

Geometry(dico)	Create a geometry that defines the fluid part and the solid part.
Domain([dico, geometry, stencil, ...])	Create a domain that defines the fluid part and the solid part and computes the distances between these two states.
Scheme(dico[, stencil])	Create the class with all the needed informations for each elementary scheme.
Simulation(dico[, domain, scheme, sorder, dtype])	create a class simulation

pyLBM.Geometry

class pyLBM. Geometry (dico)
Create a geometry that defines the fluid part and the solid part.
Parameters dico : a dictionary that contains the following key:value

- box : a dictionary for the definition of the computed box
- elements : a list of elements (optional)

Notes

The dictionary that defines the box should contains the following key:value

- x : a list of the bounds in the first direction
- y: a list of the bounds in the second direction (optional)
- z : a list of the bounds in the third direction (optional)
- label : an integer or a list of integers (length twice the number of dimensions) used to label each edge (optional)

Examples

see demo/examples/geometry/

Attributes

dim	(int) number of spatial dimensions (1, 2, or 3)
bounds	(numpy array) the bounds of the box in each spatial direction
box_label	(list of integers) a list of the four labels for the left, right, bottom, top, front, and back edges
list_elem	(list of elements) a list that contains each element added or deleted in the box

Methods

add_elem :	function that adds an element in the box
visualize :	function to visualize the box
list_of_labels :	return a list of all the unique labels of the geometry

pyLBM.Domain

class pyLBM. Domain (dico=None, geometry=None, stencil=None, space_step=None, verif=True)
Create a domain that defines the fluid part and the solid part and computes the distances between these two states.

Parameters dico : a dictionary that contains the following key:value

- box : a dictionary that defines the computational box
- elements : the list of the elements (available elements are given in the module elements)
- space_step : the spatial step
- schemes : a list of dictionaries, each of them defining a elementary Scheme

Warning: the sizes of the box must be a multiple of the space step $d x$

Notes

The dictionary that defines the box should contains the following key:value
-x : a list of the bounds in the first direction
$\cdot y$: a list of the bounds in the second direction (optional)
$\cdot \mathrm{Z}$: a list of the bounds in the third direction (optional)
\bullet label : an integer or a list of integers (length twice the number of dimensions) used to label each edge (optional)
See Geometry for more details.
If the geometry and/or the stencil were previously generated, it can be used directly as following

```
>>> Domain(dico, geometry = geom, stencil = sten)
```

where geom is an object of the class Geometry and sten an object of the class Stencil In that case, dico does not need to contain the informations for generate the geometry and/or the stencil
In 1D, distance [q, i] is the distance between the point $\mathrm{x}[\mathrm{i}]$ and the border in the direction of the q th velocity.
In 2D, distance $[\mathrm{q}, \mathrm{j}, \mathrm{i}]$ is the distance between the point $(\mathrm{x}[\mathrm{i}], \mathrm{y}[\mathrm{j}]$) and the border in the direction of qth velocity
In 3D, distance[q, $\mathrm{k}, \mathrm{j}, \mathrm{i}]$ is the distance between the point $(\mathrm{x}[\mathrm{i}], \mathrm{y}[\mathrm{j}], \mathrm{z}[\mathrm{k}])$ and the border in the direction of qth velocity

In 1 D , flag $[\mathrm{q}, \mathrm{i}]$ is the flag of the border reached by the point $\mathrm{x}[\mathrm{i}]$ in the direction of the q th velocity
In 2D, flag[q, $\mathrm{j}, \mathrm{i}]$ is the flag of the border reached by the point $(\mathrm{x}[\mathrm{i}], \mathrm{y}[\mathrm{j}]$) in the direction of q th velocity
In 2D, flag[q, $k, j, i]$ is the flag of the border reached by the point ($x[i], y[j], z[k])$ in the direction of q th velocity

Examples

see demo/examples/domain/

Attributes

dim	(int) number of spatial dimensions (example: 1, 2, or 3)
global- bounds	(numpy array) the bounds of the box in each spatial direction
bounds	(numpy array) the local bounds of the process in each spatial direction
dx	(double) space step (example: 0.1, 1.e-3)
type	(string) type of data (example: 'float64')
stencil	the stencil of the velocities (object of the class Stencil)
\vdots	
global_sizeflist of int) number of points in each direction	
extent	(list of int) number of points to add on each side (max velocities)
coords	(numpy array) coordinates of the domain
x	(numpy array) first coordinate of the domain
y	(numpy array) second coordinate of the domain (None if dim<2)
z	(numpy array) third coordinate of the domain (None if dim<3)
in_or_out (numpy array) defines the fluid and the solid part (fluid: value=valin, solid: value=valout)	
dis- tance	(numpy array) defines the distances to the borders. The distance is scaled by dx and is not equal to valin only for the points that reach the border with the specified velocity.
flag	(numpy array) NumPy array that defines the flag of the border reached with the specified velocity

Methods

visualize : \quad Visualize the domain by creating a plot

pyLBM.Scheme

class pyLBM. Scheme (dico, stencil=None)
Create the class with all the needed informations for each elementary scheme.

Parameters dico : a dictionary that contains the following key:value

- dim : spatial dimension (optional if the box is given)
- scheme_velocity : the value of the ratio space step over time step (la = dx / dt)
- schemes : a list of dictionaries, one for each scheme
- generator : a generator for the code, optional (see Generator)
- ode_solver : a method to integrate the source terms, optional (see ode_solver)
- test_stability : boolean (optional)

Notes

Each dictionary of the list schemes should contains the following key:value
-velocities : list of the velocities number
-conserved moments : list of the moments conserved by each scheme
-polynomials : list of the polynomial functions that define the moments
-equilibrium : list of the values that define the equilibrium
-relaxation_parameters : list of the value of the relaxation parameters
-source_terms : dictionary do define the source terms (optional, see examples)
-init : dictionary to define the initial conditions (see examples)
If the stencil has already been computed, it can be pass in argument.

Examples

see demo/examples/scheme/

Attributes

dim	(int) spatial dimension
dx	(double) space step
dt	(double) time step
la	(double) scheme velocity, ratio dx/dt
nscheme	(int) number of elementary schemes
stencil	(object of class Stencil) a stencil of velocities
P	(list of sympy matrix) list of polynomials that define the moments
EQ	(list of sympy matrix) list of the equilibrium functions
s	(list of list of doubles) relaxation parameters (exemple: s[k][l] is the parameter associated to the lth moment in the kth scheme)
M	(sympy matrix) the symbolic matrix of the moments
Mnum	(numpy array) the numeric matrix of the moments (m = Mnum F)
invM	(sympy matrix) the symbolic inverse matrix
invM- num	(numpy array) the numeric inverse matrix (F = invMnum m)
genera- tor	(Generator) the used generator (NumpyGenerator, CythonGenerator, ...)
ode_solver (ode_solver,) the used ODE solver (explicit_euler, heun, ...)	

Methods

create_moments_matrix :	Create the moments matrices
create_relaxation_function :	Create the relaxation function
create_equilibrium_function :	Create the equilibrium function
create_transport_function :	Create the transport function
create_f2m_function :	Create the function f2m
create_m2f_function :	Create the function m2f
generate :	Generate the code
equilibrium :	Compute the equilibrium
transport :	Transport phase
relaxation :	Relaxation phase
f2m :	Compute the moments from the distribution functions
m2f :	Compute the distribution functions from the moments
onetimestep :	One time step of the Lattice Boltzmann method
set_initialization:	set the initialization functions for the conserved moments
set_source_terms :	set the source terms functions
set_boundary_conditions :	compute the amplification matrix of the relaxation
com- pute_amplification_matrix_relaxation $:$	
com- pute_amplification_matrix(wave_vectothe given wave vector $:$	compute the amplification matrix of one time step of the scheme for
vp_amplification_matrix(wave_vector)compute the eigenvalues of the amplification matrix for a given wave $:$	vector
is_L2_stable :	test the L2 stability of the scheme
is_monotonically_stable :	test the monotonical stability of the scheme

pyLBM.Simulation

class pyLBM. Simulation (dico, domain=None, scheme $=$ None, sorder $=$ None, dtype $=$ 'float64') create a class simulation

Parameters dico : dictionary
domain : object of class Domain, optional
scheme : object of class Scheme, optional
type : optional argument (default value is 'float64')

Notes

The methods transport, relaxation, equilibrium, f2m, m2f, boundary_condition, and one_time_step are just call of the methods of the class Scheme.

Examples

see demo/examples/
Access to the distribution functions and the moments.

In 1D:

```
>>>F[n][k][i]
>>>m[n][k][i]
```

get the kth distribution function of the nth elementary scheme and the kth moment of the nth elementary scheme at the point $\mathrm{x}[0][\mathrm{i}]$.

In 2 D :

```
>>>F[n][k][j, i]
>>>m[n][k][j, i]
```

get the kth distribution function of the nth elementary scheme and the kth moment of the nth elementary scheme at the point $\mathrm{x}[0][\mathrm{i}], \mathrm{x}[1][\mathrm{j}]$.

Attributes

dim	(int) spatial dimension
type	(float64) the type of the values
domain	(Domain) the domain given in argument
scheme	(Scheme) the scheme given in argument
m	(numpy array) a numpy array that contains the values of the moments in each point
F	(numpy array) a numpy array that contains the values of the distribution functions in each point

Methods

initialization :	initialize all the arrays
transport :	compute the transport phase (modifies the array _F)
relaxation :	compute the relaxation phase (modifies the array _m)
equilibrium :	compute the equilibrium
f2m :	compute the moments _m from the distribution _F
m2f :	compute the distribution_F from the moments _m
bound- ary_condition $:$	compute the boundary conditions (modifies the array _F)
one_time_step :	compute a complet time step combining boundary_condition, transport, f2m, relaxation, m2f
time_info :	print informations about time

The modules

the module stencil

Stencil(dico)	Create the stencil of velocities used by the scheme(s).
OneStencil(v, nv, num2index, nv_ptr)	Create a stencil of a LBM scheme.
Velocity([dim, num, vx, vy, vz])	Create a velocity.

pyLBM.stencil.Stencil

class pyLBM. stencil. Stencil (dico)
Create the stencil of velocities used by the scheme(s).
The numbering of the velocities follows the convention for 1D and 2D.
Parameters dico : a dictionary that contains the following key:value

- dim : the value of the spatial dimension (1,2 or 3)
- schemes : a list of the dictionaries that contain the key:value velocities
[\{'velocities’:[...]\}, \{‘velocities':[...]\}, \{‘velocities':[...]\}, ...]

Notes

The velocities for each schemes are defined as a Python list.

Examples

```
>>> s = Stencil({'dim': 1,
    'schemes':[{'velocities': range(9) }, ],
            })
>>> s
Stencil informations
    * spatial dimension: 1
    * maximal velocity in each direction: [4 None None]
    * minimal velocity in each direction: [-4 None None]
    * Informations for each elementary stencil:
            stencil 0
            - number of velocities: 9
            - velocities: (0: 0), (1: 1), (2: -1), (3: 2), (4: -2), (5: 3), (6: -3), -
\hookrightarrow(7:4), (8: -4),
```

```
>>> s = Stencil({'dim': 2,
    'schemes':[{'velocities':range(9)},
                {'velocities':range(50)},
                ],
    })
>>> s
Stencil informations
    * spatial dimension: 2
    * maximal velocity in each direction: [4 3 None]
    * minimal velocity in each direction: [-3 -3 None]
    * Informations for each elementary stencil:
            stencil 0
            - number of velocities: 9
            - velocities: (0: 0, 0), (1: 1, 0), (2: 0, 1), (3: -1, 0), (4: 0, -1), -
\hookrightarrow(5: 1, 1), (6: -1, 1), (7: -1, -1), (8: 1, -1),
            stencil 1
            - number of velocities: 50
            - velocities: (0: 0, 0), (1: 1, 0), (2: 0, 1), (3: -1, 0), (4: 0, -1), -
(5: 1, 1), (6: -1, 1), (7: -1, -1), (8: 1, -1), (9: 2, 0), (10: 0, 2), (11: -2, -
\hookrightarrow), (12: 0, -2), (13: 2, 2), (14: -2, 2), (15: -2, -2), (16: 2, -2), (17: 2, 1),
\hookrightarrow(18: 1, 2), (19: -1, 2), (20: -2, 1), (21: -2, -1), (22: -1, -2), (23: 1, -2), -
\hookrightarrow(24:2, -1), (25: 3, 0), (26: 0, 3), (27: -3, 0), (28:0, -3), (29: 3, 3), (30:5
->1), (37: -3, -1), (38: -1, -3), (39: 1, -3), (40: 3, -1), (41: 3, 2), (42: 2,
```

2.5. the module stenci $)$, ($44:-3,2),(45:-3,-2),(46:-2,-3),(47: 2,-3),(48: 3,79$ $\rightarrow 2)$, (49: 4, 0) ,
get the x component of the unique velocities

```
>>> s.uvx
array([ 0, 1, 0, -1, 0, 1, -1, -1, 1, 2, 0, -2, 0, 2, -2, -2, 2,
    2, 1, -1, -2, -2, -1, 1, 2, 3, 0, -3, 0, 3, -3, -3, 3, 3,
    1, -1, -3, -3, -1, 1, 3, 3, 2, -2, -3, -3, -2, 2, 3, 4])
```

get the y component of the velocity for the second stencil

```
>>> s.vy[1]
array ([ 0, 0, 1, 0, -1, 1, 1, -1, -1, 0, 2, 0, -2, 2, 2, -2, -2,
    1, 2, 2, 1, -1, -2, -2, -1, 0, 3, 0, -3, 3, 3, -3, -3, 1,
    3, 3, 1, -1, -3, -3, -1, 2, 3, 3, 2, -2, -3, -3, -2, 0])
```


Attributes

$u v x$	the x component of the unique velocities.
$u v y$	the y component of the unique velocities.
$u v z$	the z component of the unique velocities.
unum	the numbering of the unique velocities.
$v \max$	the maximal velocity in norm for each spatial direction.
$v \min$	the minimal velocity in norm for each spatial direction.
$V X$	$v x[\mathrm{k}]$ the x component of the velocities for the stencil k.
$V Y$	$v y[\mathrm{k}]$ the y component of the velocities for the stencil k.
$V Z$	$v z[\mathrm{k}]$ the z component of the velocities for the stencil k.
num	num $[\mathrm{k}]$ the numbering of the velocities for the stencil k.
unvtot	the number of unique velocities involved in the stencils.

pyLBM.stencil.Stencil.uvx

Stencil.uvx
the x component of the unique velocities.

pyLBM.stencil.Stencil.uvy

Stencil.uvy
the y component of the unique velocities.

pyLBM.stencil.Stencil.uvz

Stencil.uvz
the z component of the unique velocities.

pyLBM.stencil.Stencil.unum

Stencil.unum

the numbering of the unique velocities.

pyLBM.stencil.Stencil.vmax

Stencil.vmax

the maximal velocity in norm for each spatial direction.
pyLBM.stencil.Stencil.vmin
Stencil.vmin
the minimal velocity in norm for each spatial direction.
pyLBM.stencil.Stencil.vx
Stencil.vx
$\mathrm{vx}[\mathrm{k}]$ the x component of the velocities for the stencil k .
pyLBM.stencil.Stencil.vy
Stencil.vy
$v y[k]$ the y component of the velocities for the stencil k.

pyLBM.stencil.Stencil.vz

Stencil.vz
$\mathrm{vz}[\mathrm{k}]$ the z component of the velocities for the stencil k.

pyLBM.stencil.Stencil.num

Stencil.num
num $[k]$ the numbering of the velocities for the stencil k.

pyLBM.stencil.Stencil.unvtot

Stencil.unvtot
the number of unique velocities involved in the stencils.

dim	(int) the spatial dimension (1,2 or 3).
unique_velocit(id\&umPy array) array of all velocities involved in the stencils. Each unique velocity appeared	
only once.	

Methods

append	L.append(object) - append object to end
	Continued on next page

Table 2.4 - continued from previous page

count(...)	L.extend(iterable) - extend list by appending elements from the iterable
extend	get all the velocities for all the stencils in one array
get_all_velocities()	get the symetrics velocities.
get_stencil(k)	Raises ValueError if the value is not present.
get_symmetric([axis])	L.insert(index, object - insert object before index
index((value, [start, ...)	check if all the velocities have their symetric.
insert	Raises IndexError if list is empty or index is out of range.
is_symmetric()	L.remove(value) - remove first occurrence of value.
pop(...)	L.reverse() - reverse IN PLACE
remove	L.sort(cmp=None, key=None, reverse=False) - stable sort $I N$ PLACE;
reverse	plot the velocities
sort	

pyLBM.stencil.Stencil.append

Stencil.append()
L.append(object) - append object to end

pyLBM.stencil.Stencil.count

Stencil. count (value) \rightarrow integer - return number of occurrences of value

pyLBM.stencil.Stencil.extend

Stencil.extend()

L.extend(iterable) - extend list by appending elements from the iterable

pyLBM.stencil.Stencil.get_all_velocities

```
Stencil.get_all_velocities()
```

get all the velocities for all the stencils in one array

pyLBM.stencil.Stencil.get_stencil

Stencil.get_stencil (k)

pyLBM.stencil.Stencil.get_symmetric

Stencil.get_symmetric (axis=None) get the symetrics velocities.
pyLBM.stencil.Stencil.index
Stencil.index (value[, start $[$, stop $]]) \rightarrow$ integer - return first index of value.
Raises ValueError if the value is not present.
pyLBM.stencil.Stencil.insert
Stencil.insert()
L.insert(index, object) - insert object before index

pyLBM.stencil.Stencil.is_symmetric

Stencil.is_symmetric()

check if all the velocities have their symetric.

pyLBM.stencil.Stencil.pop

Stencil. pop ([index]) \rightarrow item - remove and return item at index (default last).
Raises IndexError if list is empty or index is out of range.

pyLBM.stencil.Stencil.remove

Stencil.remove()
L.remove(value) - remove first occurrence of value. Raises ValueError if the value is not present.

pyLBM.stencil.Stencil.reverse

Stencil.reverse()

L.reverse() - reverse IN PLACE

pyLBM.stencil.Stencil.sort

Stencil.sort()

L. $\operatorname{sort}(\mathrm{cmp}=$ None, key=None, reverse=False) - stable sort $I N P L A C E ; \operatorname{cmp}(\mathrm{x}, \mathrm{y})->-1,0,1$

pyLBM.stencil.Stencil.visualize

```
Stencil.visualize(viewer_mod=<module 'pyLBM.viewer.matplotlibViewer' from
                        '/home/docs/checkouts/readthedocs.org/user_builds/pylbm-
                        loic/conda/readthedoc_v1/lib/python2.7/site-packages/pyLBM-
                        0.3.0-py2.7.egg/pyLBM/viewer/matplotlibViewer.pyc'>, k=None,
        unique_velocities=False)
    plot the velocities
```

Parameters viewer : package used to plot the figure (could be matplotlib, vtk, ...)
see viewer for more information
\mathbf{k} : list of stencil index to plot
if None plot all stencils
unique_velocities : if True plot the unique velocities

pyLBM.stencil.OneStencil

```
class pyLBM.stencil.OneStencil ( v,nv,num2index, nv_ptr)
```

Create a stencil of a LBM scheme.
Parameters \mathbf{v} : list
the list of the velocities of that stencil
nv: int
size of the list
num2index : list of integers
link between the velocity number and its position in the unique velocities array

Attributes

num	the numbering of the velocities.
$V X$	the x component of the velocities.
$V y$	the y component of the velocities.
$V z$	the z component of the velocities.

pyLBM.stencil.OneStencil.num

OneStencil.num

the numbering of the velocities.

pyLBM.stencil.OneStencil.vx

OneStencil.vx
the x component of the velocities.

```
pyLBM.stencil.OneStencil.vy
```

```
OneStencil.vy
```

the y component of the velocities.

pyLBM.stencil.OneStencil.vz

```
OneStencil.vz
```

the z component of the velocities.

V	(list) the list of the velocities of that stencil
nv	(int) size of the list v
num2index	(list of integers) link between the velocity number and its position in the unique velocities array

pyLBM.stencil.Velocity

class pyLBM. stencil.Velocity (dim=None, num=None, $v x=$ None, $v y=N o n e, v z=N o n e$)
Create a velocity.
Parameters dim : int, optional
The dimension of the velocity.
num : int, optional
The number of the velocity in the numbering convention of Lattice-Boltzmann scheme.
$\mathbf{v x}$: int, optional
The x component of the velocity vector.
vy : int, optional
The y component of the velocity vector.
$\mathbf{v z}$: int, optional
The z component of the velocity vector.

Notes

Velocities numbering 1D

6.-.......... 4
4-.......... 2
2-......... 0
0............. 1
1-...........-3 5

Velocities numbering 2D

Velocities numbering 3D

Examples

Create a velocity with the dimension and the number

```
>>> v = Velocity(dim = 1, num = 2)
>>> v
velocity 2
    vx: -1
```

Create a velocity with a direction

```
>>> v = Velocity(vx=1, vy=1)
>>> v
velocity 5
    vx: 1
    vy: 1
```


Attributes

V velocity \quad (

pyLBM.stencil.Velocity.v

Velocity.v

velocity

dim	(int) The dimension of the velocity.
num	The number of the velocity in the numbering convention of Lattice-Boltzmann scheme.
vx	(int) The x component of the velocity vector.
vy	(int) The y component of the velocity vector.
vz	(int) The z component of the velocity vector.

Methods

get_symmetric([axis] $)$	return the symmetric velocity.
set_symmetric ()	create the symetric velocity.

pyLBM.stencil.Velocity.get_symmetric
Velocity.get_symmetric (axis=None)
return the symmetric velocity.
Parameters axis : the axis of the symmetry, optional
(None involves the symmetric with the origin, 0 with the x axis, 1 with the y axis, and 2 with the z axis)

Returns The symmetric of the velocity

pyLBM.stencil.Velocity.set_symmetric

Velocity.set_symmetric() create the symetric velocity.

The module elements

New in version 0.2: the geometrical elements are yet implemented in 3D.
The module elements contains all the geometrical shapes that can be used to build the geometry.
The 2D elements are:

Circle(center, radius[, label, isfluid])	Class Circle
	Continued on next page

Table 2.8 - continued from previous page

Ellipse(center, v1, v2[, label, isfluid])	Class Ellipse
Parallelogram(point, vecta, vectb[, label, ...])	Class Parallelogram
Triangle(point, vecta, vectb[, label, isfluid])	Class Triangle

pyLBM.elements.Circle

class pyLBM.elements.Circle (center, radius, label=0, isfluid=False)
Class Circle
Parameters center : a list that contains the two coordinates of the center
radius : a positive float for the radius
label : list of one integer (default [0])
isfluid : boolean

- True if the circle is added
- False if the circle is deleted

Examples

the circle centered in $(0,0)$ with radius 1

```
>>> center = [0., 0.]
>>> radius = 1.
>>> Circle(center, radius)
    Circle([0 0],1) (solid)
```


Attributes

number_of_bounds	(int) 1
center	(numpy array) the coordinates of the center of the circle
radius	(double) positive float for the radius of the circle
label	(list of integers) the list of the label of the edge
isfluid	(boolean) True if the circle is added and False if the circle is deleted

Methods

get_bounds ()	Get the bounds of the circle.
point_inside(grid)	return a boolean array which defines
distance(grid, v[, dmax $])$	Compute the distance in the v direction between the cir- cle and the points defined by (\mathbf{x}, y).

pyLBM.elements.Circle.get_bounds
Circle.get_bounds()
Get the bounds of the circle.
pyLBM.elements.Circle.point_inside

Circle.point_inside (grid)
return a boolean array which defines if a point is inside or outside of the circle.
Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: y$ coordinates of the points
Returns Array of boolean (True inside the circle, False otherwise)

Notes

the edge of the circle is considered as inside.

pyLBM.elements.Circle.distance

Circle.distance (grid, v, dmax $=$ None)
Compute the distance in the v direction between the circle and the points defined by (x, y).

Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: y$ coordinates of the points
\mathbf{v} : direction of interest
Returns array of distances

pyLBM.elements.Ellipse

class pyLBM.elements.Ellipse (center, v1, v2, label=0, isfluid=False)
Class Ellipse

Parameters center : a list that contains the two coordinates of the center
v1 : a vector
v2 : a second vector (v1 and v2 have to be othogonal)
label : list of one integer (default [0])
isfluid : boolean

- True if the ellipse is added
- False if the ellipse is deleted

Examples

the ellipse centered in $(0,0)$ with $\mathrm{v} 1=[2,0], \mathrm{v} 2=[0,1]$

```
>>> center = [0., 0.]
>>> v1 = [2., 0.]
>>> v2 = [0., 1.]
>>> Ellipse(center, v1, v2)
    Ellipse([0 0], [2 0], [0 1]) (solid)
```


Attributes

number_of_bounds	(int) 1
center	(numpy array) the coordinates of the center of the ellipse
v1	(numpy array) the coordinates of the first vector
v2	(numpy array) the coordinates of the second vector
label	(list of integers) the list of the label of the edge
isfluid	(boolean) True if the ellipse is added and False if the ellipse is deleted

Methods

get_bounds ()	Get the bounds of the ellipse.
point_inside $($ grid $)$	return a boolean array which defines
distance(grid, v[, dmax $])$	Compute the distance in the v direction between the el-
	lipse and the points defined by (x, y).

pyLBM.elements.Ellipse.get_bounds

```
Ellipse.get_bounds()
```

Get the bounds of the ellipse.
pyLBM.elements.Ellipse.point_inside
Ellipse.point_inside(grid)
return a boolean array which defines if a point is inside or outside of the ellipse.
Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: y$ coordinates of the points

Returns Array of boolean (True inside the ellipse, False otherwise)

Notes

the edge of the ellipse is considered as inside.

pyLBM.elements.Ellipse.distance

Ellipse.distance (grid, v, dmax=None)
Compute the distance in the v direction between the ellipse and the points defined by (x, y).
Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: y$ coordinates of the points
\mathbf{v} : direction of interest
Returns array of distances

pyLBM.elements.Parallelogram

class pyLBM.elements.Parallelogram (point, vecta, vectb, label=0, isfluid=False)
Class Parallelogram
Parameters point : the coordinates of the first point of the parallelogram
vecta : the coordinates of the first vector
vectb : the coordinates of the second vector
label : list of four integers (default $[0,0,0,0]$)
isfluid : boolean

- True if the parallelogram is added
- False if the parallelogram is deleted

Examples

the square $[0,1] x[0,1]$

```
>>> point = [0., 0.]
>>> vecta = [1., 0.]
>>> vectb = [0., 1.]
>>> Parallelogram(point, vecta, vectb)
    Parallelogram([0 0],[0 1],[1 0]) (solid)
```


Attributes

number_of_bounds	(int) 4
point	(numpy array) the coordinates of the first point of the parallelogram
vecta	(numpy array) the coordinates of the first vector
vectb	(numpy array) the coordinates of the second vector
label	(list of integers) the list of the label of the edge
isfluid	(boolean) True if the parallelogram is added and False if the parallelogram is deleted

Methods

get_bounds ()	return the bounds of the parallelogram.
point_inside(grid)	return a boolean array which defines
distance $($ grid, v[, dmax $])$	Compute the distance in the v direction between the par- allelogram and the points defined by (x, y).

pyLBM.elements.Parallelogram.get_bounds

Parallelogram.get_bounds()
return the bounds of the parallelogram.

pyLBM.elements.Parallelogram.point_inside

Parallelogram.point_inside (grid)
return a boolean array which defines if a point is inside or outside of the parallelogram.
Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: y$ coordinates of the points
Returns Array of boolean (True inside the parallelogram, False otherwise)

Notes

the edges of the parallelogram are considered as inside.

pyLBM.elements.Parallelogram.distance

Parallelogram.distance (grid, v, dmax=None)
Compute the distance in the v direction between the parallelogram and the points defined by (x, y).

Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: \mathrm{y}$ coordinates of the points
\mathbf{v} : direction of interest
Returns array of distances

pyLBM.elements.Triangle

class pyLBM.elements.Triangle (point, vecta, vectb, label=0, isfluid=False)
Class Triangle
Parameters point: the coordinates of the first point of the triangle
vecta: the coordinates of the first vector
vectb: the coordinates of the second vector
label : list of three integers (default $[0,0,0]$)
isfluid : boolean

- True if the triangle is added
- False if the triangle is deleted

Examples

the bottom half square of $[0,1] x[0,1]$

```
>>> point = [0., 0.]
>>> vecta = [1., 0.]
>>> vectb = [0., 1.]
>>> Triangle(point, vecta, vectb)
    Triangle([0 0],[0 1],[1 0]) (solid)
```


Attributes

number_of_bounds	(int) 3
point	(numpy array) the coordinates of the first point of the triangle
vecta	(numpy array) the coordinates of the first vector
vectb	(numpy array) the coordinates of the second vector
label	(list of integers) the list of the label of the edge
isfluid	(boolean) True if the triangle is added and False if the triangle is deleted

Methods

get_bounds ()	return the smallest box where the triangle is.
point_inside(grid)	return a boolean array which defines
distance $($ grid, v[, dmax $])$	Compute the distance in the v direction between the tri- angle and the points defined by (x, y).

pyLBM.elements.Triangle.get_bounds

Triangle.get_bounds()
return the smallest box where the triangle is.

pyLBM.elements.Triangle.point_inside

Triangle.point_inside (grid)
return a boolean array which defines if a point is inside or outside of the triangle.
Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: \mathrm{y}$ coordinates of the points
Returns Array of boolean (True inside the triangle, False otherwise)

Notes
the edges of the triangle are considered as inside.

pyLBM.elements.Triangle.distance

Triangle.distance (grid, v, dmax $=$ None)
Compute the distance in the v direction between the triangle and the points defined by (x, y).

Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: y$ coordinates of the points
\mathbf{v} : direction of interest
Returns array of distances
The 3D elements are:

Sphere(center, radius[, label, isfluid])	Class Sphere
Ellipsoid(center, v1, v2, v3[, label, isfluid])	Class Ellipsoid
Parallelepiped(point, v0, v1, v2[, label, ...])	Class Parallelepiped
Cylinder_Circle(center, v1, v2, w[, label, ...])	Class Cylinder_Circle
Cylinder_Ellipse(center, v1, v2, w[, label, ...])	Class Cylinder_Ellipse
Cylinder_Triangle(center, v1, v2, w[,...])	Class Cylinder_Triangle

pyLBM.elements.Sphere

class pyLBM. elements.Sphere (center, radius, label=0, isfluid=False)
Class Sphere
Parameters center : a list that contains the three coordinates of the center
radius : a positive float for the radius
label : list of one integer (default [0])
isfluid : boolean

- True if the sphere is added
- False if the sphere is deleted

Examples

the sphere centered in $(0,0,0)$ with radius 1

```
>>> center = [0., 0., 0.]
>>> radius = 1.
>>> Sphere(center, radius)
    Sphere([0 0 0],1) (solid)
```


Attributes

number_of_bounds	(int) 1
center	(numpy array) the coordinates of the center of the sphere
radius	(double) positive float for the radius of the sphere
label	(list of integers) the list of the label of the edge
isfluid	(boolean) True if the sphere is added and False if the sphere is deleted

Methods

get_bounds ()	Get the bounds of the sphere.
point_inside(grid)	return a boolean array which defines
distance(grid, v[,dmax $])$	Compute the distance in the v direction between the sphere and the points defined by $(\mathbf{x}, \mathrm{y}, \mathrm{z})$.

pyLBM.elements.Sphere.get_bounds

Sphere.get_bounds ()

Get the bounds of the sphere.
pyLBM.elements.Sphere.point_inside

Sphere.point_inside (grid)
return a boolean array which defines if a point is inside or outside of the sphere.
Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: y$ coordinates of the points
$z: z$ coordinates of the points
Returns Array of boolean (True inside the sphere, False otherwise)

Notes

the edge of the sphere is considered as inside.
pyLBM.elements.Sphere.distance
Sphere.distance (grid, v, dmax $=$ None)
Compute the distance in the v direction between the sphere and the points defined by $(\mathrm{x}, \mathrm{y}, \mathrm{z})$.

```
We note M = (x,y,z),O=(0,0,0),\vec{v}=(\mp@subsup{v}{x}{},\mp@subsup{v}{y}{},\mp@subsup{v}{z}{})
We have to find the first intersection (if it exists)
of the line D and the sphere S.
Of the line D and the sphere S
Ni=(x+\lambdaiv>
Then, }\mp@subsup{\lambda}{i}{},i=1,2,\mp@code{are the solutions of
(v2}+\mp@subsup{v}{}{2}+\mp@subsup{v}{}{2})\mp@subsup{\lambda}{}{2}+2(xve solutions
(v
There are two real solutions iff
\Delta=(x\mp@subsup{v}{x}{}+y\mp@subsup{v}{y}{}+z\mp@subsup{v}{z}{}\mp@subsup{)}{}{2}-(\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2}+\mp@subsup{z}{}{2}-\mp@subsup{R}{}{2})(\mp@subsup{v}{x}{2}+\mp@subsup{v}{y}{2}+\mp@subsup{v}{z}{2})\geqslant0.
If }\Delta\geqslant0\mathrm{ , the solutions are
\lambda\pm}=-\epsilon\frac{|x\mp@subsup{v}{x}{}+y\mp@subsup{v}{y}{}+z\mp@subsup{v}{z}{}|\mp\epsilon\sqrt{}{\Delta}}{\mp@subsup{v}{x}{2}+\mp@subsup{v}{y}{2}+\mp@subsup{v}{z}{2}}\mathrm{ ,where }\epsilon=\operatorname{sign}(x\mp@subsup{v}{x}{}+y\mp@subsup{v}{y}{}+z\mp@subsup{v}{z}{})
Concerning the boundary conditions,
the interesting solution (if it exists) coresponds to
0<\lambda\leqslant1.
We note \(M=(x, y, z), O=(0,0,0), \vec{v}=\left(v_{x}, v_{y}, v_{z}\right)\)
(if it exists)
The points \(\mathrm{N}_{1}\) and \(\mathrm{N}_{2}\) read
\(N_{i}=\left(x+\lambda_{i} v_{x}, y+\lambda_{i} v_{y}, z+\lambda_{i} v_{z}\right)\) with \(\left(x+\lambda_{i} v_{x}\right)^{2}+\left(y+\lambda_{i} v_{y}\right)^{2}+\left(z+\lambda_{i} v_{z}\right)^{2}=R^{2}\)
Then, \(\lambda_{i}, i=1,2\), are the solutions of
\(\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right) \lambda^{2}+2\left(x v_{x}+y v_{y}+z v_{z}\right) \lambda+x^{2}+y^{2}+z^{2}-R^{2}=0\).
\(\Delta=\left(x v_{x}+y v_{y}+z v_{z}\right)^{2}-\left(x^{2}+y^{2}+z^{2}-R^{2}\right)\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right) \geqslant 0\).
If \(\Delta \geqslant 0\), the solutions are
Concerning the boundary conditions,
\(0<\lambda \leqslant 1\).
\(0<\lambda \leqslant 1\).
```


Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: y$ coordinates of the points
$z: z$ coordinates of the points
\mathbf{v} : direction of interest
Returns array of distances

pyLBM.elements.Ellipsoid

class pyLBM.elements.Ellipsoid(center, v1, v2, v3, label=0, isfluid=False)
Class Ellipsoid
Parameters center : a list that contains the three coordinates of the center
v1 : a vector
v2 : a vector
v 3 : a vector ($\mathrm{v} 1, \mathrm{v} 2$, and v3 have to be orthogonal)
label : list of one integer (default [0])
isfluid : boolean

- True if the ellipsoid is added
- False if the ellipsoid is deleted

Examples

the ellipsoid centered in $(0,0,0)$ with $v 1=[3,0,0], \mathrm{v} 2=[0,2,0]$, and $v 3=[0,0,1]$

```
>>> center = [0., 0., 0.]
>> v1, v2, v3 = [3,0,0], [0,2,0], [0,0,1]
```

```
>>> Ellipsoid(center, v1, v2, v3)
```

 Ellipsoid([0 0 0], [3 0 0], [0 20\(]\), \(\left[\begin{array}{lll}0 & 0 & 1]) \\ \text { (solid) }\end{array}\right.\)

Attributes

number_of_bounds	(int) 1
center	(numpy array) the coordinates of the center of the sphere
v1	(numpy array) the coordinates of the first vector
v2	(numpy array) the coordinates of the second vector
v3	(numpy array) the coordinates of the third vector
label	(list of integers) the list of the label of the edge
isfluid	(boolean) True if the ellipsoid is added and False if the ellipsoid is deleted

Methods

get_bounds()	Get the bounds of the ellipsoid.
point_inside(grid)	return a boolean array which defines
distance(grid, v[,dmax $])$	Compute the distance in the v direction between the el-

pyLBM.elements.Ellipsoid.get_bounds

Ellipsoid.get_bounds()

Get the bounds of the ellipsoid.

pyLBM.elements.Ellipsoid.point_inside

Ellipsoid.point_inside(grid)

return a boolean array which defines if a point is inside or outside of the ellipsoid.
Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: y$ coordinates of the points
$z: z$ coordinates of the points
Returns Array of boolean (True inside the ellipsoid, False otherwise)

Notes
the edge of the ellipsoid is considered as inside.

pyLBM.elements.Ellipsoid.distance

Ellipsoid.distance (grid, v, dmax=None)
Compute the distance in the v direction between the ellipsoid and the points defined by $(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: y$ coordinates of the points
$\mathrm{z}: \mathrm{z}$ coordinates of the points
\mathbf{v} : direction of interest
Returns array of distances

pyLBM.elements.Parallelepiped

class pyLBM.elements.Parallelepiped (point, v0, v1, v2, label=0, isfluid=False)
Class Parallelepiped
Parameters point : a list that contains the three coordinates of the first point
$\mathbf{v 0}$: a list of the three coordinates of the first vector that defines the edge
$\mathbf{v 1}$: a list of the three coordinates of the second vector that defines the edge
$\mathbf{v 2}$: a list of the three coordinates of the third vector that defines the edge
label : list of three integers (default $[0,0,0]$ for the bottom, the top and the side)
isfluid : boolean

- True if the cylinder is added
- False if the cylinder is deleted

Examples

the vertical canonical cube centered in $(0,0,0)$

```
>>> center = [0., 0., 0.5]
>>> v0, v1, v2 = [1., 0., 0.], [0., 1., 0.], [0., 0., 1.]
>>> Parallelepiped(center, v0, v1, v2)
    Parallelepiped([0 0 0], [1 0 0], [0 1 1 0], [0 0 1]) (solid)
```


Attributes

number_of_bounds	(int) 6
point	(numpy array) the coordinates of the first point of the parallelepiped
v 0	(list of doubles) the three coordinates of the first vector
v 1	(list of doubles) the three coordinates of the second vector
v 2	(list of doubles) the three coordinates of the third vector
label	(list of integers) the list of the label of the edge
isfluid	(boolean) True if the parallelepiped is added and False if the parallelepiped is deleted

Methods

get_bounds :	return the bounds of the parallelepiped
point_inside :	return True or False if the points are in or out the parallelepiped
distance :	get the distance of a point to the parallelepiped

pyLBM.elements.Cylinder_Circle

class pyLBM.elements.Cylinder_Circle(center, v1, v2, w, label=0, isfluid=False)

Class Cylinder_Circle

Parameters center : a list that contains the three coordinates of the center
$\mathbf{v 0}$: a list of the three coordinates of the first vector that defines the circular section
$\mathbf{v 1}$: a list of the three coordinates of the second vector that defines the circular section
\mathbf{w} : a list of the three coordinates of the vector that defines the direction of the side
label : list of three integers (default [0,0,0] for the bottom, the top and the side)
isfluid : boolean

- True if the cylinder is added
- False if the cylinder is deleted

Examples

the vertical canonical cylinder centered in $(0,0,1 / 2)$ with radius 1

```
>>> center = [0., 0., 0.5]
>>> v0, v1 = [1., 0., 0.], [0., 1., 0.]
>>> w = [0., 0., 1.]
>>> Cylinder_Circle(center, v0, v1, w)
    Cylinder_Circle([0 0 0.5], [1 0 0], [0 1 0], [0 0 1]) (solid)
```


Attributes

num- ber_of_bounds	(int) 3
center	(numpy array) the coordinates of the center of the cylinder
v0	(list of doubles) the three coordinates of the first vector that defines the base section
v1	(list of doubles) the three coordinates of the second vector that defines the base section
W	(list of doubles) the three coordinates of the vector that defines the direction of the side
label	(list of integers) the list of the label of the edge
isfluid	(boolean) True if the cylinder is added and False if the cylinder is deleted

Methods

get_bounds ()	Get the bounds of the cylinder.
point_inside(grid)	return a boolean array which defines
distance $($ grid, v[, dmax $])$	Compute the distance in the v direction between the cylinder and the points defined by $(\mathbf{x}, \mathrm{y}, \mathrm{z})$.

pyLBM.elements.Cylinder_Circle.get_bounds
Cylinder_Circle.get_bounds()
Get the bounds of the cylinder.
pyLBM.elements.Cylinder_Circle.point_inside
Cylinder_Circle.point_inside(grid)
return a boolean array which defines if a point is inside or outside of the cylinder.
Parameters \mathbf{x} : x coordinates of the points
\mathbf{y} : y coordinates of the points
$\mathrm{z}: \mathrm{z}$ coordinates of the points
Returns Array of boolean (True inside the cylinder, False otherwise)

Notes
the edge of the cylinder is considered as inside.
pyLBM.elements.Cylinder_Circle.distance
Cylinder_Circle.distance (grid, v, dmax=None)
Compute the distance in the v direction between the cylinder and the points defined by (x, y, z).

We note $M=(x, y, z), O=(0,0,0), \vec{v}=\left(v_{x}, v_{y}, v_{z}\right)$ in the frame of the $\operatorname{cylinder}(L=1, R=1)$.
We have to find the first intersection (if it exists) of the line D and the cylinder
The first consider the intersed N_{1} and N_{2} read
The points N_{1} and N_{2} read
$N_{i}=\left(x+\lambda_{i} v_{x} y+\lambda_{i} v_{y} z+\lambda_{i} v_{z}\right)$ with $\left(x+\lambda_{i} v_{x}\right)^{2}+\left(y+\lambda_{i} v_{y}\right)^{2}=R^{2}$.
Then, $\lambda_{i}, i=1,2$, are the solutions of
$\left(v_{x}^{2}+v_{y}^{2}\right) \lambda^{2}+2\left(x v_{x}+y v_{y}\right) \lambda+x^{2}+y^{2}-R^{2}=0$.
There are two real solutions iff
$\Delta=\left(x v_{x}+y v_{y}\right)^{2}-\left(x^{2}+y^{2}-R^{2}\right)\left(v_{x}^{2}+v_{y}^{2}\right) \geqslant 0$.
If $\Delta \geqslant 0$, the solutions are
$\lambda_{ \pm}=-\epsilon \frac{\left|v_{x}+y v_{y}\right| \mp \epsilon \sqrt{\Delta}}{v^{2}+v^{2}}$,
$\epsilon=\operatorname{sign}\left(x v_{x}+y v_{y}\right)$

- We then consider the intersection if $\left|z+\lambda_{i} v_{z}\right| \leq 1$. The points P_{1} and P_{2} read
$P_{i}=\left(x+\mu_{i} v_{x}, y+\mu_{i} v_{y}, z+\mu_{i} v_{z}\right)$ with $z+\mu_{1} v_{z}=1$ and $z+\mu_{2} v_{z}=-1$.
If $v_{z} \neq 0$, we have $\mu_{1}=(1-z) / v_{z}$ and $\mu_{2}=-(1+z) / v_{z}$.
The point P_{i} is on the cylinder if $\left(x+\mu_{i} v_{x}\right)^{2}+\left(y+\mu_{i} v_{y}\right)^{2} \leq 1$.

Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: y$ coordinates of the points
$z: z$ coordinates of the points
\mathbf{v} : direction of interest
Returns array of distances

pyLBM.elements.Cylinder_Ellipse

class pyLBM.elements.Cylinder_Ellipse (center, v1, v2, w, label=0, isfluid=False)
Class Cylinder_Ellipse
Parameters center : a list that contains the three coordinates of the center
$\mathbf{v 0}$: a list of the three coordinates of the first vector that defines the circular section
$\mathbf{v 1}$: a list of the three coordinates of the second vector that defines the circular section
\mathbf{w} : a list of the three coordinates of the vector that defines the direction of the side
label : list of three integers (default $[0,0,0]$ for the bottom, the top and the side)
isfluid : boolean

- True if the cylinder is added
- False if the cylinder is deleted

Warning: The vectors v1 and v2 have to be orthogonal.

Examples

the vertical canonical cylinder centered in $(0,0,1 / 2)$ with radius 1

```
>>> center = [0., 0., 0.5]
>>> v0, v1 = [1., 0., 0.], [0., 1., 0.]
>>> w = [0., 0., 1.]
>>> Cylinder_Ellipse(center, v0, v1, w)
    Cylinder_Ellipse([0 0 0.5], [1 0 0], [[0 1 0], [0 0 1]) (solid)
```


Attributes

num- ber_of_bounds	(int) 3
center	(numpy array) the coordinates of the center of the cylinder
v0	(list of doubles) the three coordinates of the first vector that defines the base section
v1	(list of doubles) the three coordinates of the second vector that defines the base section
w	(list of doubles) the three coordinates of the vector that defines the direction of the side
label	(list of integers) the list of the label of the edge
isfluid	(boolean) True if the cylinder is added and False if the cylinder is deleted

Methods

get_bounds ()	Get the bounds of the cylinder.
point_inside(grid)	return a boolean array which defines
distance(grid, v[, dmax $])$	Compute the distance in the v direction between the cylinder and the points defined by $(\mathrm{x}, \mathrm{y}, \mathrm{z})$.

pyLBM.elements.Cylinder_Ellipse.get_bounds
Cylinder_Ellipse.get_bounds()
Get the bounds of the cylinder.
pyLBM.elements.Cylinder_Ellipse.point_inside
Cylinder_Ellipse.point_inside (grid)
return a boolean array which defines if a point is inside or outside of the cylinder.
Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: y$ coordinates of the points
$\mathrm{z}: \mathrm{z}$ coordinates of the points
Returns Array of boolean (True inside the cylinder, False otherwise)

Notes
the edge of the cylinder is considered as inside.
pyLBM.elements.Cylinder_Ellipse.distance
Cylinder_Ellipse.distance (grid, v, dmax=None)
Compute the distance in the v direction between the cylinder and the points defined by (x, y, z).

We note $M=(x, y, z), O=(0,0,0), \vec{v}=\left(v_{x}, v_{y}, v_{z}\right)$ in the frame of the $\operatorname{cylinder}(L=1, R=1)$.
We have to find the first intersection (if it exists) of the line D and the cylinder.

- We first consider the intersedions with the side of the cyimder as if it was en

The points N_{1} and N_{2} read
$N_{i}=\left(x+\lambda_{i} v_{x}, y+\lambda_{i} v_{y}, z+\lambda_{i} v_{z}\right)$ with $\left(x+\lambda_{i} v_{x}\right)^{2}+\left(y+\lambda_{i} v_{y}\right)^{2}=R^{2}$.
Then, $\lambda_{i}, i=1,2$, are the solutions of
$\left(v_{x}^{2}+v_{y}^{2}\right) \lambda^{2}+2\left(x v_{x}+y v_{y}\right) \lambda+x^{2}+y^{2}-R^{2}=0$.
There are two real solutions iff
$\Delta=\left(x v_{x}+y v_{y}\right)^{2}-\left(x^{2}+y^{2}-R^{2}\right)\left(v_{x}^{2}+v_{y}^{2}\right) \geqslant 0$.
If $\Delta \geqslant 0$, the solutions are
$\lambda_{ \pm}=-\epsilon \frac{\left|v_{x}+y v_{y}\right| \mp \epsilon \sqrt{\Delta}}{v^{2}+v^{2}}$,
$\epsilon=\operatorname{sign}\left(x v_{x}+y v_{y}\right)$

- We then consider the intersection if $\left|z+\lambda_{i} v_{z}\right| \leq 1$. The points P_{1} and P_{2} read
$P_{i}=\left(x+\mu_{i} v_{x}, y+\mu_{i} v_{y}, z+\mu_{i} v_{z}\right)$ with $z+\mu_{1} v_{z}=1$ and $z+\mu_{2} v_{z}=-1$.
If $v_{z} \neq 0$, we have $\mu_{1}=(1-z) / v_{z}$ and $\mu_{2}=-(1+z) / v_{z}$.
The point P_{i} is on the cylinder if $\left(x+\mu_{i} v_{x}\right)^{2}+\left(y+\mu_{i} v_{y}\right)^{2} \leq 1$.

Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: y$ coordinates of the points
$\mathbf{z}: \mathrm{z}$ coordinates of the points
\mathbf{v} : direction of interest
Returns array of distances

pyLBM.elements.Cylinder_Triangle

class pyLBM.elements.Cylinder_Triangle (center, v1, $v 2$, w, label=0, isfluid=False)
Class Cylinder_Triangle
Parameters center : a list that contains the three coordinates of the center
$\mathbf{v 0}$: a list of the three coordinates of the first vector that defines the triangular section
$\mathbf{v 1}$: a list of the three coordinates of the second vector that defines the triangular section
\mathbf{w} : a list of the three coordinates of the vector that defines the direction of the side
label : list of three integers (default $[0,0,0]$ for the bottom, the top and the side)
isfluid : boolean

- True if the cylinder is added
- False if the cylinder is deleted

Examples

the vertical canonical cylinder centered in ($0,0,1 / 2$)

```
>>> center = [0., 0., 0.5]
>>> v0, v1 = [1., 0., 0.], [0., 1., 0.]
>>> w = [0., 0., 1.]
>>> Cylinder_Triangle(center, v0, v1, w)
    Cylinder_Triangle([0 0 0.5], [1 0 0], [0 1 0], [0 0 1]) (solid)
```


Attributes

num- ber_of_bounds	(int) 5
center	(numpy array) the coordinates of the center of the cylinder
v0	(list of doubles) the three coordinates of the first vector that defines the base section
v1	(list of doubles) the three coordinates of the second vector that defines the base section
W	(list of doubles) the three coordinates of the vector that defines the direction of the side
label	(list of integers) the list of the label of the edge
isfluid	(boolean) True if the cylinder is added and False if the cylinder is deleted

Methods

get_bounds ()	Get the bounds of the cylinder.
point_inside(grid)	return a boolean array which defines
distance $($ grid, v[, dmax $])$	Compute the distance in the v direction between the cylinder and the points defined by (x, y, z).

pyLBM.elements.Cylinder_Triangle.get_bounds
Cylinder_Triangle.get_bounds()
Get the bounds of the cylinder.
pyLBM.elements.Cylinder_Triangle.point_inside
Cylinder_Triangle.point_inside(grid)
return a boolean array which defines if a point is inside or outside of the cylinder.
Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: y$ coordinates of the points
$\mathrm{z}: \mathrm{z}$ coordinates of the points
Returns Array of boolean (True inside the cylinder, False otherwise)

Notes
the edge of the cylinder is considered as inside.
pyLBM.elements.Cylinder_Triangle.distance
Cylinder_Triangle.distance (grid, v, dmax $=$ None)
Compute the distance in the v direction between the cylinder and the points defined by $(\mathrm{x}, \mathrm{y}, \mathrm{z})$.

We note $M=(x, y, z), O=(0,0,0), \vec{v}=\left(v_{x}, v_{y}, v_{z}\right)$ in the frame of the $\operatorname{cylinder}(L=1, R=1)$.
We have to find the first intersection (if it exists) of the line D and the cylinder

- We first consider the intersedions with the side or thinder as if it was and

The points N_{1} and N_{2} read
$N_{i}=\left(x+\lambda_{i} v_{x}, y+\lambda_{i} v_{y}, z+\lambda_{i} v_{z}\right)$ with $\left(x+\lambda_{i} v_{x}\right)^{2}+\left(y+\lambda_{i} v_{y}\right)^{2}=R^{2}$.
Then, $\lambda_{i}, i=1,2$, are the solutions of
$\left(v_{x}^{2}+v_{y}^{2}\right) \lambda^{2}+2\left(x v_{x}+y v_{y}\right) \lambda+x^{2}+y^{2}-R^{2}=0$.
There are two real solutions iff
$\Delta=\left(x v_{x}+y v_{y}\right)^{2}-\left(x^{2}+y^{2}-R^{2}\right)\left(v_{x}^{2}+v_{y}^{2}\right) \geqslant 0$.
If $\Delta \geqslant 0$, the solutions are
$\lambda_{ \pm}=-\epsilon \frac{\left|v_{x}+y v_{y}\right| \mp \epsilon \sqrt{\Delta}}{v^{2}+v^{2}}$,
re $\epsilon=\operatorname{sign}\left(x v_{x}+y v_{y}\right)$

- We then consider the intersection if $\left|z+\lambda_{i} v_{z}\right| \leq 1$. The points P_{1} and P_{2} read
$P_{i}=\left(x+\mu_{i} v_{x}, y+\mu_{i} v_{y}, z+\mu_{i} v_{z}\right)$ with $z+\mu_{1} v_{z}=1$ and $z+\mu_{2} v_{z}=-1$.
If $v_{z} \neq 0$, we have $\mu_{1}=(1-z) / v_{z}$ and $\mu_{2}=-(1+z) / v_{z}$.
The point P_{i} is on the cylinder if $\left(x+\mu_{i} v_{x}\right)^{2}+\left(y+\mu_{i} v_{y}\right)^{2} \leq 1$.

Parameters \mathbf{x} : x coordinates of the points
$\mathbf{y}: y$ coordinates of the points
$\mathbf{z}: \mathrm{z}$ coordinates of the points
\mathbf{v} : direction of interest
Returns array of distances

the module geometry

| Geometry(dico) | Create a geometry that defines the fluid part and the solid
 part. |
| :--- | :--- | part.

pyLBM.geometry.Geometry

class pyLBM. geometry. Geometry (dico)
Create a geometry that defines the fluid part and the solid part.
Parameters dico : a dictionary that contains the following key:value

- box: a dictionary for the definition of the computed box
- elements : a list of elements (optional)

Notes

The dictionary that defines the box should contains the following key:value

- x : a list of the bounds in the first direction
- y : a list of the bounds in the second direction (optional)
- z : a list of the bounds in the third direction (optional)
- label : an integer or a list of integers (length twice the number of dimensions) used to label each edge (optional)

Examples

see demo/examples/geometry/

Attributes

dim	(int) number of spatial dimensions (1, 2, or 3)
bounds	(numpy array) the bounds of the box in each spatial direction
box_label	(list of integers) a list of the four labels for the left, right, bottom, top, front, and back edges
list_elem	(list of elements) a list that contains each element added or deleted in the box

Methods

add_elem :	function that adds an element in the box
visualize :	function to visualize the box
list_of_labels :	return a list of all the unique labels of the geometry

the module domain

pyLBM.domain.Domain

class pyLBM. domain.Domain (dico=None, geometry=None, stencil=None, space_step=None, verif=True)
Create a domain that defines the fluid part and the solid part and computes the distances between these two states.

Parameters dico : a dictionary that contains the following key:value

- box : a dictionary that defines the computational box
- elements : the list of the elements (available elements are given in the module elements)
- space_step : the spatial step
- schemes : a list of dictionaries, each of them defining a elementary Scheme

Warning: the sizes of the box must be a multiple of the space step $d x$

Notes

The dictionary that defines the box should contains the following key:value

- x : a list of the bounds in the first direction
-y : a list of the bounds in the second direction (optional)
$\cdot \mathrm{z}$: a list of the bounds in the third direction (optional)
-label : an integer or a list of integers (length twice the number of dimensions) used to label each edge (optional)

See Geometry for more details.
If the geometry and/or the stencil were previously generated, it can be used directly as following
>>> Domain(dico, geometry = geom, stencil = sten)
where geom is an object of the class Geometry and sten an object of the class Stencil In that case, dico does not need to contain the informations for generate the geometry and/or the stencil

In 1D, distance $[\mathrm{q}, \mathrm{i}]$ is the distance between the point $\mathrm{x}[\mathrm{i}]$ and the border in the direction of the qth velocity.
In 2 D , distance $[\mathrm{q}, \mathrm{j}, \mathrm{i}]$ is the distance between the point $(\mathrm{x}[\mathrm{i}], \mathrm{y}[\mathrm{j}])$ and the border in the direction of q th velocity
In 3D, distance $[\mathrm{q}, \mathrm{k}, \mathrm{j}, \mathrm{i}]$ is the distance between the point ($\mathrm{x}[\mathrm{i}], \mathrm{y}[\mathrm{j}], \mathrm{z}[\mathrm{k}]$) and the border in the direction of qth velocity

In 1D, flag[q, $i]$ is the flag of the border reached by the point $x[i]$ in the direction of the q th velocity
In 2 D , flag $[q, j, i]$ is the flag of the border reached by the point $(x[i], y[j])$ in the direction of q th velocity
In 2 D , flag $[\mathrm{q}, \mathrm{k}, \mathrm{j}, \mathrm{i}]$ is the flag of the border reached by the point $(\mathrm{x}[\mathrm{i}], \mathrm{y}[\mathrm{j}], \mathrm{z}[\mathrm{k}])$ in the direction of qth velocity

Examples

see demo/examples/domain/

Attributes

dim	(int) number of spatial dimensions (example: 1, 2, or 3)
global- bounds	(numpy array) the bounds of the box in each spatial direction
bounds	(numpy array) the local bounds of the process in each spatial direction
dx	(double) space step (example: 0.1, 1.e-3)
type	(string) type of data (example: 'float64')
stencil	the stencil of the velocities (object of the class Stencil)
\vdots	
global_sizeflist of int) number of points in each direction	
extent	(list of int) number of points to add on each side (max velocities)
coords	(numpy array) coordinates of the domain
x	(numpy array) first coordinate of the domain
y	(numpy array) second coordinate of the domain (None if dim<2)
z	(numpy array) third coordinate of the domain (None if dim<3)
in_or_out (numpy array) defines the fluid and the solid part (fluid: value=valin, solid: value=valout)	
dis-- tance	(numpy array) defines the distances to the borders. The distance is scaled by dx and is not equal to valin only for the points that reach the border with the specified velocity.
flag	(numpy array) NumPy array that defines the flag of the border reached with the specified velocity

Methods

visualize :	Visualize the domain by creating a plot

the module storage

Array_(nv, gspace_size, vmax[, sorder,...$])$	This class defines the storage of the moments and distribu- tion functions in pyLBM.
SOA(nv, gspace_size, vmax, mpi_topo[, ...])	This class defines a structure of arrays to store the un- knowns of the lattice Boltzmann schemes.
AOS(nv, gspace_size, vmax, mpi_topo[, ...])	This class defines an array of structures to store the un- knowns of the lattice Boltzmann schemes.

pyLBM.storage.Array

class pyLBM.storage. Array ($n v$, gspace_size, vmax, sorder=None, mpi_topo=None, dtype=<type 'numpy.float64’>, gpu_support=False)
This class defines the storage of the moments and distribution functions in pyLBM.
It sets the storage in memory and how to access.
Parameters nv: int
number of velocities
gspace_size: list of int
number of points in each direction including the fictitious point

vmax: list of int

the size of the fictitious points in each direction

sorder: list of int

the order of nv, nx, ny and nz Default is None which mean [nv, nx, ny, nz]
mpi_topo:
the mpi topology
dtype: type
the type of the array. Default is numpy.double

Attributes

nspace	the space size.
nv	the number of velocities.
shape	the shape of the array that stores the data.
size	the size of the array that stores the data.

pyLBM.storage.Array.nspace
Array.nspace
the space size.
pyLBM.storage.Array.nv
Array.nv
the number of velocities.
pyLBM.storage.Array.shape
Array.shape
the shape of the array that stores the data.

pyLBM.storage.Array.size

Array.size

the size of the array that stores the data.
array

Methods

generate ()	generate periodic conditions functions for loo.py back- end.
set_conserved_moments(consm, nv_ptr)	add conserved moments information to have a direct ac- cess.
update ()	update ghost points on the interface with the datas of the neighbors.

pyLBM.storage.Array.generate

Array.generate()
generate periodic conditions functions for loo.py backend.
pyLBM.storage.Array.set_conserved_moments
Array.set_conserved_moments (consm, $\left.n v _p t r\right)$
add conserved moments information to have a direct access.
Parameters consm : dict
set the name and the location of the conserved moments. The format is key : the conserved moment (sympy symbol or string) value : list of 2 integers
first item : the scheme number second item : the index of the conserved moment in this scheme
nv_ptr : list of int
store the location of the schemes

pyLBM.storage.Array.update

Array.update ()
update ghost points on the interface with the datas of the neighbors.

pyLBM.storage.SOA

class pyLBM. storage. SOA ($n v, \quad$ gspace_size, vmax, mpi_topo, dtype=<type 'numpy.float64’>, gpu_support=False)
This class defines a structure of arrays to store the unknowns of the lattice Boltzmann schemes.
Parameters nv: int
number of velocities
gspace_size: list of int
number of points in each direction including the fictitious point

vmax: list of int

the size of the fictitious points in each direction
mpi_topo:
the mpi topology
dtype: type
the type of the array. Default is numpy.double

Attributes

nspace	the space size.
nv	the number of velocities.
shape	the shape of the array that stores the data.
size	the size of the array that stores the data.

pyLBM.storage.SOA.nspace

SOA.nspace
the space size.
pyLBM.storage.SOA.nv

SOA.nv
the number of velocities.
pyLBM.storage.SOA.shape
SOA. shape
the shape of the array that stores the data.

pyLBM.storage.SOA.size

SOA.size
the size of the array that stores the data.

```
    array
```


Methods

generate()	generate periodic conditions functions for loo.py back- end.
reshape()	reshape.
set_conserved_moments(consm, nv_ptr)	add conserved moments information to have a direct ac- cess.
update()	update ghost points on the interface with the datas of the neighbors.

pyLBM.storage.SOA.generate

SOA. generate ()
generate periodic conditions functions for loo.py backend.
pyLBM.storage.SOA.reshape
SOA. reshape ()
reshape.
pyLBM.storage.SOA.set_conserved_moments

SOA.set_conserved_moments (consm, nv_ptr) add conserved moments information to have a direct access.

Parameters consm : dict
set the name and the location of the conserved moments. The format is key : the conserved moment (sympy symbol or string) value : list of 2 integers
first item : the scheme number second item : the index of the conserved moment in this scheme
nv_ptr : list of int
store the location of the schemes
pyLBM.storage.SOA.update
SOA. update ()
update ghost points on the interface with the datas of the neighbors.

pyLBM.storage.AOS

class pyLBM.storage. AOS ($n v, \quad$ gspace_size, vmax, mpi_topo, dtype=<type 'numpy.float64’>, gpu_support=False)
This class defines an array of structures to store the unknowns of the lattice Boltzmann schemes.
Parameters nv: int
number of velocities
gspace_size: list of int
number of points in each direction including the fictitious point

vmax: list of int

the size of the fictitious points in each direction
mpi_topo:
the mpi topology
dtype: type
the type of the array. Default is numpy.double

Attributes

nspace	the space size.
	Continued on next page

Table 2.26 - continued from previous page

nv	the number of velocities.
shape	the shape of the array that stores the data.
size	the size of the array that stores the data.

pyLBM.storage.AOS.nspace

AOS.nspace
the space size.

pyLBM.storage.AOS.nv

AOS.nv
the number of velocities.
pyLBM.storage.AOS.shape
AOS.shape
the shape of the array that stores the data.
pyLBM.storage.AOS.size
AOS.size
the size of the array that stores the data.

| array |
| :--- | :--- |

Methods

generate()	generate periodic conditions functions for loo.py back- end.
reshape()	
set_conserved_moments(consm, nv_ptr)	add conserved moments information to have a direct ac- cess.
update()	update ghost points on the interface with the datas of the neighbors.

pyLBM.storage.AOS.generate
AOS. generate ()
generate periodic conditions functions for loo.py backend.
pyLBM.storage.AOS.reshape
AOS.reshape ()
pyLBM.storage.AOS.set_conserved_moments

AOS.set_conserved_moments (consm, $n v _p t r$) add conserved moments information to have a direct access.

Parameters consm : dict
set the name and the location of the conserved moments. The format is key : the conserved moment (sympy symbol or string) value : list of 2 integers
first item : the scheme number second item : the index of the conserved moment in this scheme
nv_ptr : list of int
store the location of the schemes
pyLBM.storage.AOS.update
AOS. update ()
update ghost points on the interface with the datas of the neighbors.

the module bounds

The module bounds contains the classes needed to treat the boundary conditions with the LBM formalism
The classes are

Boundary(domain, dico)	Construct the boundary problem by defining the list of in- dices on the border and the methods used on each label.
Boundary_method(istore, ilabel, distance, ...)	Set boundary method.
bounce_back(istore, ilabel, distance, ...)	Boundary condition of type bounce-back
anti_bounce_back(istore, ilabel, distance, ...)	Boundary condition of type anti bounce-back
Neumann(istore, ilabel, distance, stencil, ...)	Boundary condition of type Neumann

pyLBM.boundary.Boundary

class pyLBM.boundary. Boundary (domain, dico)
Construct the boundary problem by defining the list of indices on the border and the methods used on each label.
Parameters domain : Domain class
dico : a dictionary that describes the boundaries

- key is a label
- value are again a dictionnary with
- "method" key that gives the boundary method class used (Bounce_back, Anti_bounce_back, ...)
_ "value_bc" key that gives the value on the boundary

Attributes

bv	(dictionnary) for each label key, a list of spatial indices and distance define for each velocity the points on the domain that are on the boundary.
meth- ods	(list) list of boundary methods used in the LBM scheme The list contains Boundary_method instance.

pyLBM.boundary.Boundary_method

class pyLBM.boundary.Boundary_method (istore, ilabel, distance, stencil, value_bc, nspace, backend) Set boundary method.

Parameters None

Attributes

feq	(NumPy array) the equilibrium values of the distribution function on the border
rhs	(NumPy array) the additional terms to fix the boundary values
distance	(NumPy array) distance to the border (needed for Bouzidi type conditions)
istore	(NumPy array)
ilabel	(NumPy array)
iload	(list)
value_bc	(dictionnary) the prescribed values on the border

Methods

prepare_rhs :	compute the distribution function at the equilibrium with the value on the border

pyLBM.boundary.bounce_back

class pyLBM.boundary.bounce_back (istore, ilabel, distance, stencil, value_bc, nspace, backend)
Boundary condition of type bounce-back

Notes

bounce back: the exiting particles bounce back without sign modification

Methods

set_rhs :	compute and set the additional terms to fix the boundary values
set_iload $:$	compute the indices that are needed (symmertic velocities and space indices)
update :	update the values of the distribution fonctions ouside the domain according to the bounce back condition

pyLBM.boundary.anti_bounce_back

class pyLBM.boundary.anti_bounce_back (istore, ilabel, distance, stencil, value_bc, nspace, back-
Boundary condition of type anti bounce-back

Notes

anti bounce back: the exiting particles bounce back with sign modification

Methods

set_rhs :	compute and set the additional terms to fix the boundary values
set_iload $:$	compute the indices that are needed (symmertic velocities and space indices)
update :	update the values of the distribution fonctions ouside the domain according to the anti bounce back condition

pyLBM.boundary.Neumann

class pyLBM.boundary.Neumann (istore, ilabel, distance, stencil, value_bc, nspace, backend)
Boundary condition of type Neumann

Methods

set_rhs :	compute and set the additional terms to fix the boundary values
set_iload $:$	compute the indices that are needed (symmertic velocities and space indices)
update :	update the values of the distribution fonctions ouside the domain according to the Neumann condition

chapter 3

References

- genindex
- search

Bibliography

[dH92] D. D'HUMIERES, Generalized Lattice-Boltzmann Equations, Rarefied Gas Dynamics: Theory and Simulations, 159, pp. 450-458, AIAA Progress in astronomics and aeronautics (1992).
[D08] F. DUBOIS, Equivalent partial differential equations of a lattice Boltzmann scheme, Computers and Mathematics with Applications, 55, pp. 1441-1449 (2008).
[G14] B. GRAILLE, Approximation of mono-dimensional hyperbolic systems: a lattice Boltzmann scheme as a relaxation method, Journal of Comutational Physics, 266 (3179757), pp. 74-88 (2014).
[QdHL92] Y.H. QIAN, D. D'HUMIERES, and P. LALLEMAND, Lattice BGK Models for Navier-Stokes Equation, Europhys. Lett., 17 (6), pp. 479-484 (1992).

A

anti_bounce_back (class in pyLBM.boundary), 118
AOS (class in pyLBM.storage), 113
append() (pyLBM.stencil.Stencil method), 82
Array (class in pyLBM.storage), 109

B

bounce_back (class in pyLBM.boundary), 116
Boundary (class in pyLBM.boundary), 115
Boundary_method (class in pyLBM.boundary), 116

C

Circle (class in pyLBM.elements), 89
count() (pyLBM.stencil.Stencil method), 82
Cylinder_Circle (class in pyLBM.elements), 101
Cylinder_Ellipse (class in pyLBM.elements), 103
Cylinder_Triangle (class in pyLBM.elements), 105

D

distance() (pyLBM.elements.Circle method), 90
distance() (pyLBM.elements.Cylinder_Circle method), 102
distance() (pyLBM.elements.Cylinder_Ellipse method), 104
distance() (pyLBM.elements.Cylinder_Triangle method), 106
distance() (pyLBM.elements.Ellipse method), 92
distance() (pyLBM.elements.Ellipsoid method), 99
distance() (pyLBM.elements.Parallelogram method), 93
distance() (pyLBM.elements.Sphere method), 97
distance() (pyLBM.elements.Triangle method), 95
Domain (class in pyLBM), 74
Domain (class in pyLBM.domain), 108

E

Ellipse (class in pyLBM.elements), 90
Ellipsoid (class in pyLBM.elements), 98
extend() (pyLBM.stencil.Stencil method), 82

G

generate() (pyLBM.storage.AOS method), 114
generate() (pyLBM.storage.Array method), 111
generate() (pyLBM.storage.SOA method), 112
Geometry (class in pyLBM), 73
Geometry (class in pyLBM.geometry), 107
get_all_velocities() (pyLBM.stencil.Stencil method), 82
get_bounds() (pyLBM.elements.Circle method), 89
get_bounds() (pyLBM.elements.Cylinder_Circle
method), 102
get_bounds() (pyLBM.elements.Cylinder_Ellipse method), 104
get_bounds() (pyLBM.elements.Cylinder_Triangle method), 106
get_bounds() (pyLBM.elements.Ellipse method), 91 get_bounds() (pyLBM.elements.Ellipsoid method), 99
get_bounds() (pyLBM.elements.Parallelogram method), 93
get_bounds() (pyLBM.elements.Sphere method), 97
get_bounds() (pyLBM.elements.Triangle method), 95
get_stencil() (pyLBM.stencil.Stencil method), 82
get_symmetric() (pyLBM.stencil.Stencil method), 82
get_symmetric() (pyLBM.stencil.Velocity method), 88
1
index() (pyLBM.stencil.Stencil method), 83
insert() (pyLBM.stencil.Stencil method), 83
is_symmetric() (pyLBM.stencil.Stencil method), 83

N

Neumann (class in pyLBM.boundary), 119 nspace (pyLBM.storage.AOS attribute), 114 nspace (pyLBM.storage.Array attribute), 110 nspace (pyLBM.storage.SOA attribute), 112 num (pyLBM.stencil.OneStencil attribute), 84 num (pyLBM.stencil.Stencil attribute), 81 nv (pyLBM.storage.AOS attribute), 114 nv (pyLBM.storage.Array attribute), 110 nv (pyLBM.storage.SOA attribute), 112

0

OneStencil (class in pyLBM.stencil), 84

P

Parallelepiped (class in pyLBM.elements), 100
Parallelogram (class in pyLBM.elements), 92
point_inside() (pyLBM.elements.Circle method), 90
point_inside() (pyLBM.elements.Cylinder_Circle method), 102
point_inside() (pyLBM.elements.Cylinder_Ellipse method), 104
point_inside() (pyLBM.elements.Cylinder_Triangle method), 106
point_inside() (pyLBM.elements.Ellipse method), 91
point_inside() (pyLBM.elements.Ellipsoid method), 99
point_inside() (pyLBM.elements.Parallelogram method), 93
point_inside() (pyLBM.elements.Sphere method), 97
point_inside() (pyLBM.elements.Triangle method), 95
pop() (pyLBM.stencil.Stencil method), 83

R

remove() (pyLBM.stencil.Stencil method), 83
reshape() (pyLBM.storage.AOS method), 114
reshape() (pyLBM.storage.SOA method), 113
reverse() (pyLBM.stencil.Stencil method), 83

S

Scheme (class in pyLBM), 75
set_conserved_moments() (pyLBM.storage.AOS method), 115
set_conserved_moments() (pyLBM.storage.Array method), 111
set_conserved_moments() (pyLBM.storage.SOA method), 113
set_symmetric() (pyLBM.stencil.Velocity method), 88
shape (pyLBM.storage.AOS attribute), 114
shape (pyLBM.storage.Array attribute), 110
shape (pyLBM.storage.SOA attribute), 112
Simulation (class in pyLBM), 77
size (pyLBM.storage.AOS attribute), 114
size (pyLBM.storage.Array attribute), 110
size (pyLBM.storage.SOA attribute), 112
SOA (class in pyLBM.storage), 111
sort() (pyLBM.stencil.Stencil method), 83
Sphere (class in pyLBM.elements), 96
Stencil, 78
Stencil (class in pyLBM.stencil), 79

T

Triangle (class in pyLBM.elements), 94

U

unum (pyLBM.stencil.Stencil attribute), 80
unvtot (pyLBM.stencil.Stencil attribute), 81 update() (pyLBM.storage.AOS method), 115 update() (pyLBM.storage.Array method), 111 update() (pyLBM.storage.SOA method), 113 uvx (pyLBM.stencil.Stencil attribute), 80 uvy (pyLBM.stencil.Stencil attribute), 80 uvz (pyLBM.stencil.Stencil attribute), 80

V

v (pyLBM.stencil.Velocity attribute), 88
Velocity (class in pyLBM.stencil), 85
visualize() (pyLBM.stencil.Stencil method), 83
vmax (pyLBM.stencil.Stencil attribute), 81
vmin (pyLBM.stencil.Stencil attribute), 81
vx (pyLBM.stencil.OneStencil attribute), 84
vx (pyLBM.stencil.Stencil attribute), 81
vy (pyLBM.stencil.OneStencil attribute), 84
vy (pyLBM.stencil.Stencil attribute), 81
vz (pyLBM.stencil.OneStencil attribute), 84
vz (pyLBM.stencil.Stencil attribute), 81

